The chiral Hall effect in canted ferromagnets and antiferromagnets
The anomalous Hall effect has been indispensable in our understanding of numerous magnetic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of antiferromagnets, where in addition to the anomalous and recently discovered crystal Hall effect, the topological Hall effec...
Saved in:
Published in | Communications physics Vol. 4; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.05.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The anomalous Hall effect has been indispensable in our understanding of numerous magnetic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of antiferromagnets, where in addition to the anomalous and recently discovered crystal Hall effect, the topological Hall effect in noncoplanar antiferromagnets has been a subject of intensive research in the past decades. Here, we uncover a distinct flavor of the Hall effect emerging in generic canted spin systems. We demonstrate that upon canting, the anomalous Hall effect acquires a contribution which is sensitive to the sense of imprinted vector chirality among spins. We explore the origins and basic properties of corresponding chiral Hall effect, and closely tie it to the symmetry properties of the system. Our findings suggest that the chiral Hall effect and corresponding chiral magneto-optical effects emerge as useful tools in characterizing an interplay of structure and chirality in complex magnets, as well as in tracking their chiral dynamics and fluctuations.
The Hall effect is about the generation of a transverse voltage when a longitudinal current is applied and many mechanisms can lead to Hall effect in magnetic material. Here, the authors report a chiral Hall effect that is proportional to the vector spin chirality in canted magnetic materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2399-3650 2399-3650 |
DOI: | 10.1038/s42005-021-00587-3 |