Single-cell multi-omics analysis reveals the mechanism of action of a novel antioxidant polyphenol nanoparticle loaded with STAT3 agonist in mediating cardiomyocyte ferroptosis to ameliorate age-related heart failure

Background Heart failure (HF) is a prevalent and critical cardiac condition that leads to profound structural and functional changes in the heart. Although traditional treatments have shown partial efficacy, the long-term outcomes remain suboptimal. Emerging research has highlighted the pivotal role...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanobiotechnology Vol. 23; no. 1; pp. 258 - 30
Main Authors Zheng, Haoyuan, Tian, Yuan, Li, Dongyu, Liang, Yanxiao
Format Journal Article
LanguageEnglish
Published London BioMed Central 29.03.2025
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1477-3155
1477-3155
DOI10.1186/s12951-025-03317-x

Cover

More Information
Summary:Background Heart failure (HF) is a prevalent and critical cardiac condition that leads to profound structural and functional changes in the heart. Although traditional treatments have shown partial efficacy, the long-term outcomes remain suboptimal. Emerging research has highlighted the pivotal role of oxidative stress and ferroptosis in HF progression. This study investigates a new therapeutic approach utilizing antioxidant polyphenol nanoparticles loaded with a STAT3 agonist (PN@Col) to target these pathways and improve age-related HF. Results Key cells and genes contributing to HF progression were identified via analysis of the GEO database, with single-cell RNA sequencing (scRNA-seq) and AUCell analysis used to evaluate differential gene expression. The STAT3 gene was highlighted as essential, and its functionality was further validated in vitro through cell experiments, confirming its impact on cardiomyocytes (CMs) in HF. Following the development of PN@Col, in vitro experiments showed that PN@Col effectively reduced oxidative stress and ferroptosis in CMs. In vivo studies in elderly HF mice demonstrated significant improvements in cardiac function following PN@Col treatment. Conclusions PN@Col offers a promising therapeutic approach to age-related HF by mitigating oxidative stress and ferroptosis in cardiomyocytes. These findings provide a solid scientific foundation for PN@Col as a potential novel treatment strategy for HF, supporting further exploration toward clinical application. Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-3155
1477-3155
DOI:10.1186/s12951-025-03317-x