Early mortality saves energy: estimating the energetic cost of excess offspring in a seabird

Offspring are often produced in excess as insurance against stochastic events or unpredictable resources. This strategy may result in high early-life mortality, yet age-specific mortality before offspring independence and its associated costs have rarely been quantified. In this study, we modelled a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 284; no. 1849; p. 20162724
Main Authors Vedder, Oscar, Zhang, He, Bouwhuis, Sandra
Format Journal Article
LanguageEnglish
Published England The Royal Society 22.02.2017
The Royal Society Publishing
EditionRoyal Society (Great Britain)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Offspring are often produced in excess as insurance against stochastic events or unpredictable resources. This strategy may result in high early-life mortality, yet age-specific mortality before offspring independence and its associated costs have rarely been quantified. In this study, we modelled age-specific survival from hatching to fledging using 24 years of data on hatching order (HO), growth and age of mortality of more than 15 000 common tern (Sterna hirundo) chicks. We found that mortality peaked directly after hatching, after which it declined rapidly. Mortality hazard was best described with the Gompertz function, and was higher with later HO, mainly due to differences in baseline mortality hazard, rather than age-dependent mortality. Based on allometric mass–metabolism relationships and detailed growth curves of starving chicks, we estimated that the average metabolizable energy intake of non-fledged chicks was only 8.7% of the metabolizable energy intake of successful chicks during the nestling phase. Although 54% of hatchlings did not fledge, our estimates suggest them to have consumed only 9.3% of the total energy consumption of all hatched chicks in the population before fledging. We suggest that rapid mortality of excess offspring is part of an adaptive brood reduction strategy to the benefit of the parents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.3679381.
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2016.2724