A characterization of Chover-type law of iterated logarithm

Let 0 < α ≤ 2 and − ∞ < β < ∞ . Let { X n ; n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1 +⋯+ X n , n ≥ 1. We say X satisfies the ( α , β )-Chover-type law of the iterated logarithm (and write X ∈ C T L I L ( α , β )) if limsup n → ∞ S n n 1...

Full description

Saved in:
Bibliographic Details
Published inSpringerPlus Vol. 3; no. 1; pp. 386 - 7
Main Authors Li, Deli, Chen, Pingyan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 28.07.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-1801
2193-1801
DOI10.1186/2193-1801-3-386

Cover

Abstract Let 0 < α ≤ 2 and − ∞ < β < ∞ . Let { X n ; n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1 +⋯+ X n , n ≥ 1. We say X satisfies the ( α , β )-Chover-type law of the iterated logarithm (and write X ∈ C T L I L ( α , β )) if limsup n → ∞ S n n 1 / α ( log log n ) − 1 = e β almost surely. This paper is devoted to a characterization of X ∈ C T L I L ( α , β ). We obtain sets of necessary and sufficient conditions for X ∈ C T L I L ( α , β ) for the five cases: α = 2 and 0 < β < ∞ , α = 2 and β = 0, 1< α <2 and − ∞ < β < ∞ , α = 1 and − ∞ < β < ∞ , and 0 < α <1 and − ∞ < β < ∞ . As for the case where α = 2 and − ∞ < β <0, it is shown that X ∉ C T L I L (2, β ) for any real-valued random variable X . As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X ∈ C T L I L ( α ,1/ α )) is given; that is, X ∈ C T L I L ( α ,1/ α ) if and only if inf b : E | X | α ( log ( e ∨ | X | ) ) bα < ∞ = 1 / α where EX = 0 whenever 1< α ≤ 2. Mathematics Subject Classification (2000) Primary: 60F15; Secondary: 60G50
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let 0 < [alpha] [less than or equal to] 2 and - ∞ <[beta] <∞. Let {X n;n [greater than or equal to] 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1++X n, n [greater than or equal to] 1. We say X satisfies the ([alpha],[beta])-Chover-type law of the iterated logarithm (and write XC T L I L([alpha],[beta])) if ... almost surely. This paper is devoted to a characterization of X C T L I L([alpha],[beta]). We obtain sets of necessary and sufficient conditions for XC T L I L([alpha],[beta]) for the five cases: [alpha] = 2 and 0 < [beta] <∞, [alpha] = 2 and [beta] = 0, 1<[alpha]<2 and -∞<[beta]<∞, [alpha] = 1 and -∞ <[beta] <∞, and 0 < [alpha] <1 and -∞ <[beta] <∞. As for the case where [alpha] = 2 and -∞ <[beta] <0, it is shown that XC T L I L(2,[beta]) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., XC T L I L([alpha],1/[alpha])) is given; that is, XC T L I L([alpha],1/[alpha]) if and only if ... where ... whenever 1< [alpha] [less than or equal to] 2. Mathematics Subject Classification (2000) Primary: 60F15; Secondary: 60G50
Let 0 < α ≤ 2 and - ∞ <β <∞. Let {X n ;n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1+⋯+X n , n ≥ 1. We say X satisfies the (α,β)-Chover-type law of the iterated logarithm (and write X∈C T L I L(α,β)) if [Formula: see text] almost surely. This paper is devoted to a characterization of X ∈C T L I L(α,β). We obtain sets of necessary and sufficient conditions for X∈C T L I L(α,β) for the five cases: α = 2 and 0 < β <∞, α = 2 and β = 0, 1<α<2 and -∞<β<∞, α = 1 and -∞ <β <∞, and 0 < α <1 and -∞ <β <∞. As for the case where α = 2 and -∞ <β <0, it is shown that X∉C T L I L(2,β) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X∈C T L I L(α,1/α)) is given; that is, X∈C T L I L(α,1/α) if and only if [Formula: see text] where [Formula: see text] whenever 1< α ≤ 2. Primary: 60F15; Secondary: 60G50.
Let 0 < α ≤ 2 and − ∞ < β < ∞ . Let { X n ; n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1 +⋯+ X n , n ≥ 1. We say X satisfies the ( α , β )-Chover-type law of the iterated logarithm (and write X ∈ C T L I L ( α , β )) if limsup n → ∞ S n n 1 / α ( log log n ) − 1 = e β almost surely. This paper is devoted to a characterization of X ∈ C T L I L ( α , β ). We obtain sets of necessary and sufficient conditions for X ∈ C T L I L ( α , β ) for the five cases: α = 2 and 0 < β < ∞ , α = 2 and β = 0, 1< α <2 and − ∞ < β < ∞ , α = 1 and − ∞ < β < ∞ , and 0 < α <1 and − ∞ < β < ∞ . As for the case where α = 2 and − ∞ < β <0, it is shown that X ∉ C T L I L (2, β ) for any real-valued random variable X . As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X ∈ C T L I L ( α ,1/ α )) is given; that is, X ∈ C T L I L ( α ,1/ α ) if and only if inf b : E | X | α ( log ( e ∨ | X | ) ) bα < ∞ = 1 / α where EX = 0 whenever 1< α ≤ 2. Mathematics Subject Classification (2000) Primary: 60F15; Secondary: 60G50
Let 0 < alpha less than or equal to 2 and - infinity < beta < infinity . Let {X n ; n greater than or equal to 1} be a sequence of independent copies of a real-valued random variable X and set S n = X sub(1)++X n , n greater than or equal to 1. We say X satisfies the ( alpha , beta )-Chover-type law of the iterated logarithm (and write XC T L I L( alpha , beta )) if lim sup sub(n arrow right infinity )|S sub(n/n) super(1/ alpha )| super((log log)n) super(-1) = e super( beta ) almost surely. This paper is devoted to a characterization of X C T L I L( alpha , beta ). We obtain sets of necessary and sufficient conditions for XC T L I L( alpha , beta ) for the five cases: alpha = 2 and 0 < beta < infinity , alpha = 2 and beta = 0, 1< alpha <2 and - infinity < beta < infinity , alpha = 1 and - infinity < beta < infinity , and 0 < alpha <1 and - infinity < beta < infinity . As for the case where alpha = 2 and - infinity < beta <0, it is shown that XC T L I L(2, beta ) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., XC T L I L( alpha ,1/ alpha )) is given; that is, XC T L I L( alpha ,1/ alpha ) if and only if inf {b: [E](|X| super(a)/(log(eV|X|)) super(ba)) < infinity } = 1/ alpha where [E]X = 0 whenever 1< alpha less than or equal to 2. Mathematics Subject Classification (2000): Primary: 60F15; Secondary: 60G50
Let 0 < α ≤ 2 and - ∞ <β <∞. Let {X n ;n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1+⋯+X n , n ≥ 1. We say X satisfies the (α,β)-Chover-type law of the iterated logarithm (and write X∈C T L I L(α,β)) if [Formula: see text] almost surely. This paper is devoted to a characterization of X ∈C T L I L(α,β). We obtain sets of necessary and sufficient conditions for X∈C T L I L(α,β) for the five cases: α = 2 and 0 < β <∞, α = 2 and β = 0, 1<α<2 and -∞<β<∞, α = 1 and -∞ <β <∞, and 0 < α <1 and -∞ <β <∞. As for the case where α = 2 and -∞ <β <0, it is shown that X∉C T L I L(2,β) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X∈C T L I L(α,1/α)) is given; that is, X∈C T L I L(α,1/α) if and only if [Formula: see text] where [Formula: see text] whenever 1< α ≤ 2.ABSTRACTLet 0 < α ≤ 2 and - ∞ <β <∞. Let {X n ;n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1+⋯+X n , n ≥ 1. We say X satisfies the (α,β)-Chover-type law of the iterated logarithm (and write X∈C T L I L(α,β)) if [Formula: see text] almost surely. This paper is devoted to a characterization of X ∈C T L I L(α,β). We obtain sets of necessary and sufficient conditions for X∈C T L I L(α,β) for the five cases: α = 2 and 0 < β <∞, α = 2 and β = 0, 1<α<2 and -∞<β<∞, α = 1 and -∞ <β <∞, and 0 < α <1 and -∞ <β <∞. As for the case where α = 2 and -∞ <β <0, it is shown that X∉C T L I L(2,β) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X∈C T L I L(α,1/α)) is given; that is, X∈C T L I L(α,1/α) if and only if [Formula: see text] where [Formula: see text] whenever 1< α ≤ 2.Primary: 60F15; Secondary: 60G50.MATHEMATICS SUBJECT CLASSIFICATION 2000Primary: 60F15; Secondary: 60G50.
ArticleNumber 386
Author Chen, Pingyan
Li, Deli
Author_xml – sequence: 1
  givenname: Deli
  surname: Li
  fullname: Li, Deli
  organization: Department of Mathematical Sciences, Lakehead University
– sequence: 2
  givenname: Pingyan
  surname: Chen
  fullname: Chen, Pingyan
  email: tchenpy@jnu.edu.cn
  organization: Department of Mathematics, Jinan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25133089$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMovtfupODGTTXPJkUQZPAFghtdh9jezEQ6zZhkFP31po7KKIjZJNx853DvPVtotfc9ILRH8BEhqjqmpGYlUZiUrGSqWkGb35XVpfcG2o3xEedTScIlXkcbVBDGsKo30clZ0UxMME2C4N5Mcr4vvC1GE_8MoUyvMyg68zKUXCZMgrbo_NgElybTHbRmTRdh9_PeRvcX53ejq_Lm9vJ6dHZTNrwWqRSqUpjZByuZtLRmUmCluKRAhGpaIimFFgMIsDWtcMWNkEy1NbEtlxaMZdvodOE7mz9MoW2gT8F0ehbc1IRX7Y3TP396N9Fj_6w5YZSLOhscfhoE_zSHmPTUxQa6zvTg51HnZSrGeCXo_6gQnEuOlczowS_00c9DnzcxGFaESUVVpvaXm__u-iuCDIgF0AQfYwCrG5c-gsizuE4TrIe09ZCnHvLUTOe0s-74l-7L-m8FXihiJvsxhKWG_5C8AySzt_A
CitedBy_id crossref_primary_10_1016_j_spl_2015_10_007
crossref_primary_10_1016_j_spl_2016_09_015
Cites_doi 10.1090/S0002-9947-1977-0455093-4
10.1007/BF01950273
10.1016/S0167-7152(02)00234-1
10.1214/009117905000000198
10.1214/aop/1176996655
10.1007/PL00008729
10.1016/j.spl.2003.08.009
10.2307/2371837
10.1090/S0002-9939-1966-0189096-2
10.1090/S0002-9939-1969-0251772-3
10.11650/twjm/1500406538
ContentType Journal Article
Copyright Li and Chen; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
SpringerPlus is a copyright of Springer, 2014.
Li and Chen; licensee Springer. 2014
Copyright_xml – notice: Li and Chen; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
– notice: SpringerPlus is a copyright of Springer, 2014.
– notice: Li and Chen; licensee Springer. 2014
DBID C6C
AAYXX
CITATION
NPM
3V.
7X2
8FE
8FG
8FH
8FK
ABJCF
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
KB.
L6V
LK8
M0K
M7P
M7S
P5Z
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1186/2193-1801-3-386
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Materials Science Database
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Agricultural Science Database
PubMed

Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2193-1801
EndPage 7
ExternalDocumentID PMC4132459
4312878891
25133089
10_1186_2193_1801_3_386
Genre Journal Article
GroupedDBID -A0
0R~
4.4
40G
53G
5VS
7X2
7XC
8CJ
8FE
8FG
8FH
AAKKN
ABEEZ
ABJCF
ACACY
ACGFO
ACGFS
ACIWK
ACPRK
ACULB
ADBBV
ADINQ
ADRAZ
AEGXH
AENEX
AEUYN
AFGXO
AFKRA
AFRAH
AHBYD
AHSBF
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ARAPS
ATCPS
BAWUL
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C24
C6C
CCPQU
CZ9
D1I
D1J
D1K
DIK
EBS
EJD
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
HZ~
K6-
K6V
K7-
KB.
KC.
KQ8
L6V
LK5
LK8
M0K
M48
M7P
M7R
M7S
M~E
O9-
OK1
P62
PATMY
PCBAR
PDBOC
PGMZT
PTHSS
PYCSY
RNS
RPM
RSV
SHS
SOJ
AAYXX
CITATION
PHGZM
PHGZT
2VQ
ABDBF
ACUHS
NPM
3V.
8FK
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c495t-586803fbf737f29375088472e158cd1722ed0ee5ef926064a5738d91fd47feaf3
IEDL.DBID 8FG
ISSN 2193-1801
IngestDate Thu Aug 21 18:13:28 EDT 2025
Fri Sep 05 11:29:13 EDT 2025
Fri Sep 05 09:11:34 EDT 2025
Sat Aug 23 14:04:57 EDT 2025
Thu Apr 03 07:01:20 EDT 2025
Tue Jul 01 01:21:42 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Fri Feb 21 02:35:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords (
,
Chover-type law of the iterated logarithm
Symmetric stable distribution with exponent
Sums of i.i.d. random variables
(α,β)-Chover-type law of the iterated logarithm
Symmetric stable distribution with exponent α
Language English
License This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-586803fbf737f29375088472e158cd1722ed0ee5ef926064a5738d91fd47feaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/2193-1801-3-386
PMID 25133089
PQID 1866137828
PQPubID 2034663
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132459
proquest_miscellaneous_1868334652
proquest_miscellaneous_1554474087
proquest_journals_1866137828
pubmed_primary_25133089
crossref_citationtrail_10_1186_2193_1801_3_386
crossref_primary_10_1186_2193_1801_3_386
springer_journals_10_1186_2193_1801_3_386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-28
PublicationDateYYYYMMDD 2014-07-28
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-28
  day: 28
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Heidelberg
PublicationTitle SpringerPlus
PublicationTitleAbbrev SpringerPlus
PublicationTitleAlternate Springerplus
PublicationYear 2014
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Chover (CR3) 1966; 17
Einmahl, Li (CR4) 2005; 33
Vasudeva (CR12) 1984; 44
Heyde (CR6) 1969; 23
Chen, Hu (CR2) 2012; 16
Kuelbs, Kurtz (CR7) 1974; 2
Pakshirajan, Vasudeva (CR8) 1977; 232
Chen (CR1) 2002; 60
Scheffler (CR11) 2000; 116
Peng, Qi (CR9) 2003; 65
Feller (CR5) 1946; 68
Qi, Cheng (CR10) 1996; 17
Y Qi (1116_CR10) 1996; 17
U Einmahl (1116_CR4) 2005; 33
RP Pakshirajan (1116_CR8) 1977; 232
J Chover (1116_CR3) 1966; 17
CC Heyde (1116_CR6) 1969; 23
R Vasudeva (1116_CR12) 1984; 44
P Chen (1116_CR1) 2002; 60
P Chen (1116_CR2) 2012; 16
L Peng (1116_CR9) 2003; 65
J Kuelbs (1116_CR7) 1974; 2
W Feller (1116_CR5) 1946; 68
H-P Scheffler (1116_CR11) 2000; 116
References_xml – volume: 232
  start-page: 33
  year: 1977
  end-page: 42
  ident: CR8
  article-title: A law of the iterated logarithm for stable summands
  publication-title: Tran Amer Math Soc
  doi: 10.1090/S0002-9947-1977-0455093-4
– volume: 44
  start-page: 215
  year: 1984
  end-page: 221
  ident: CR12
  article-title: Chover’s law of the iterated logarithm and weak convergence
  publication-title: Acta Math Hung
  doi: 10.1007/BF01950273
– volume: 60
  start-page: 367
  year: 2002
  end-page: 375
  ident: CR1
  article-title: Limiting behavior of weighted sums with stable distributions
  publication-title: Statist Probab Lett
  doi: 10.1016/S0167-7152(02)00234-1
– volume: 33
  start-page: 1601
  year: 2005
  end-page: 1624
  ident: CR4
  article-title: Some results on two-sided LIL behavior
  publication-title: Ann Probab
  doi: 10.1214/009117905000000198
– volume: 16
  start-page: 217
  year: 2012
  end-page: 236
  ident: CR2
  article-title: Limiting behavior for random elements with heavy tail
  publication-title: Taiwanese J Math
– volume: 2
  start-page: 387
  year: 1974
  end-page: 407
  ident: CR7
  article-title: Berry-esseen estimates in Hilbert space and an application to the law of the iterated logarithm
  publication-title: Ann Probab
  doi: 10.1214/aop/1176996655
– volume: 17
  start-page: 195
  issue: A
  year: 1996
  end-page: 206
  ident: CR10
  article-title: On the law of the iterated logarithm for the partial sum in the domain of attraction of stable distribution
  publication-title: Chin Ann Math
– volume: 116
  start-page: 257
  year: 2000
  end-page: 271
  ident: CR11
  article-title: A law of the iterated logarithm for heavy-tailed random vectors
  publication-title: Probab Theory Relat Fields
  doi: 10.1007/PL00008729
– volume: 65
  start-page: 401
  year: 2003
  end-page: 410
  ident: CR9
  article-title: Chover-type laws of the iterated logarithm for weighted sums
  publication-title: Statist Probab Lett
  doi: 10.1016/j.spl.2003.08.009
– volume: 68
  start-page: 257
  year: 1946
  end-page: 262
  ident: CR5
  article-title: A limit theoerm for random variables with infinite moments
  publication-title: Amer J Math
  doi: 10.2307/2371837
– volume: 17
  start-page: 441
  year: 1966
  end-page: 443
  ident: CR3
  article-title: A law of the iterated logarithm for stable summands
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-1966-0189096-2
– volume: 23
  start-page: 85
  year: 1969
  end-page: 90
  ident: CR6
  article-title: A note concerning behaviour of iterated logarithm type
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-1969-0251772-3
– volume: 16
  start-page: 217
  year: 2012
  ident: 1116_CR2
  publication-title: Taiwanese J Math
  doi: 10.11650/twjm/1500406538
– volume: 44
  start-page: 215
  year: 1984
  ident: 1116_CR12
  publication-title: Acta Math Hung
  doi: 10.1007/BF01950273
– volume: 116
  start-page: 257
  year: 2000
  ident: 1116_CR11
  publication-title: Probab Theory Relat Fields
  doi: 10.1007/PL00008729
– volume: 60
  start-page: 367
  year: 2002
  ident: 1116_CR1
  publication-title: Statist Probab Lett
  doi: 10.1016/S0167-7152(02)00234-1
– volume: 17
  start-page: 441
  year: 1966
  ident: 1116_CR3
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-1966-0189096-2
– volume: 65
  start-page: 401
  year: 2003
  ident: 1116_CR9
  publication-title: Statist Probab Lett
  doi: 10.1016/j.spl.2003.08.009
– volume: 17
  start-page: 195
  issue: A
  year: 1996
  ident: 1116_CR10
  publication-title: Chin Ann Math
– volume: 68
  start-page: 257
  year: 1946
  ident: 1116_CR5
  publication-title: Amer J Math
  doi: 10.2307/2371837
– volume: 232
  start-page: 33
  year: 1977
  ident: 1116_CR8
  publication-title: Tran Amer Math Soc
  doi: 10.1090/S0002-9947-1977-0455093-4
– volume: 33
  start-page: 1601
  year: 2005
  ident: 1116_CR4
  publication-title: Ann Probab
  doi: 10.1214/009117905000000198
– volume: 2
  start-page: 387
  year: 1974
  ident: 1116_CR7
  publication-title: Ann Probab
  doi: 10.1214/aop/1176996655
– volume: 23
  start-page: 85
  year: 1969
  ident: 1116_CR6
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-1969-0251772-3
SSID ssj0000671470
Score 1.9647496
Snippet Let 0 < α ≤ 2 and − ∞ < β < ∞ . Let { X n ; n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1 +⋯+ X n , n ≥ 1. We...
Let 0 < α ≤ 2 and - ∞ <β <∞. Let {X n ;n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1+⋯+X n , n ≥ 1. We say X...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let 0 < [alpha] [less than or equal to] 2 and - ∞ <[beta] <∞. Let {X n;n [greater...
Let 0 < alpha less than or equal to 2 and - infinity < beta < infinity . Let {X n ; n greater than or equal to 1} be a sequence of independent copies of a...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 386
SubjectTerms Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Statistics
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA46X3wR58_plAo-uIfMNkmTFBGR4RiCPjnYW2nahAmz0zlR_3svbVadzr02F0jucrnvmuQ7hE4FtXE0IThVLMEQISRWCVE4TCPDUilNYOx757t73uuz20E4-C4H5BT4ujC1s_Wk-pNR--Pl8woc_rJweMnPwekoDmCrxRRTyVfRGoQlbjOxO4f13bYcMOE7ep8F_eYj0x-4-ffW5K-j0yIidTfRhoOS3nVp-zpa0fkWqjtnffXOHKN0axtdXHtpRcxcvrv0xsbrDO39TWz_wnqj5N1-KkmWdebBlghZ9HT4tIP63ZuHTg-7qgk4hWRnikPJpU-NMoIKA8FcWAjGBNFghzQDvEJ05msdahNBLsNZEgoqswhswoTRiaG7qJaPc72PvIAkWmRMGqV8pjKjNAT_IMsoV1xHhDRQe6axOHWU4rayxSguUgvJY6vi2Ko4pjGouIHOqg7PJZvG_6LNmQni2aqILTtfQAHUyAY6qZrBIewpR5Lr8RvIAEBigvlSLJEBHVHKeAhT2CutWo2H2Io3vowaSMzZuxKwhNzzLfnjsCDmBkBAWAg9W7OV8WPoi6d5sHyah2gdEBqzP5OJbKLadPKmjwAFTdVxsbq_ACx8Aj0
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  dbid: 40G
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPYivl1fVPDgHqJtkiYpnmTxgaAnhb2Vpk1YQbuiK_59Z_rC9QVemwmkM5mZL69vAA61oDyacZZbmTHMEIbZjFsW54mXuTE-8vTe-eZWXd3L61E8moOofQtT3XZvjySrSF25tVEn6FqCRRhQmWDCqHlYJC4xKlogw8tuWwWDbyR12JD4_NBvNv98A5Xf70Z-OSCt8s7FMiw1gDE4qy28AnOuXIWVxiVfg6OGN3qwCj0CjjXv8hqcngV5x8VcP7UMJj4YjunKJqON1-Axe6dPNa-yKwKMgrhwno6f1uH-4vxueMWaQgksx_XNlMVGmVB467XQHvO3JtQlNXeo-rxAiMJdEToXO5_g8kXJLNbCFAmaQWrvMi82YKGclG4LgohnThfSeGtDaQtvHeb7qCiEssolnPfhuFVfmjcs4lTM4jGtVhNGpaTvlPSdihT13YejrsNzTaDxu-hua4-08aTXlAj5IoE4xvThoGtGH6CDjax0kzeUQUwktQyN_kMGdSSEVDH-wmZt4m48nIrchCbpg54xfidAHNyzLeXDuOLiRgzAZYw9B-00-TT0n39z-x-yO9BDhCZpM5mbXViYvry5PURBU7tfzfsPugj_MQ
  priority: 102
  providerName: Springer Nature
Title A characterization of Chover-type law of iterated logarithm
URI https://link.springer.com/article/10.1186/2193-1801-3-386
https://www.ncbi.nlm.nih.gov/pubmed/25133089
https://www.proquest.com/docview/1866137828
https://www.proquest.com/docview/1554474087
https://www.proquest.com/docview/1868334652
https://pubmed.ncbi.nlm.nih.gov/PMC4132459
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuPRSFfralq5SqQc4uCT2JHbUQwUrFlQJVFVF4hbFsa1FolnaXdS_35nEm_Iql0iJ7ciesedl-xuAj1qxHq2laCzWgjSEEbaWVuRNGbAxJmSB7zufnBbHZ_j1PD-PAbdFPFa5komdoHbzhmPkewzMlinSZ-bL1S_BWaN4dzWm0FiDjYw0Dc9zMz0aYiwkiTPUaUT0oT_s0fpUIiOpLJRQfH_6pjK6Z2HePyh5Z7e0U0LT5_AsWo_Jfs_uTXji2y3YjOtzkexEEOndF_B5P2kGLOb-qmUyD8lkxkc2BQdek8v6D3_qcZW9S0gKkuO8nP18CWfTwx-TYxETJYiG_JulyE1hUhVs0EoH0t-arS7U0hPpG0cmivQu9T73oST3pcA618q4ktiAOvg6qFew3s5b_waSTNZeOzTB2hStC9YT1TPnVGELX0o5gk8rilVNRBHnZBaXVedNmKJiEldM4kpVROIR7AwNrnoAjf9X3V6xoIoraVH94_sIPgzFtAZ4Y6Nu_fya6pBNhBpTox-pQzRSCouchvC65-rQH8lJblJTjkDf4vdQgTG4b5e0F7MOi5tsAIk5tdxdzYwbXX94mG8fH-Y7eEpGGXL8WJptWF_-vvbvyfBZ2jGsYXo07ub4GDYODk-_fae3iUR-FhN6nqD5C3pqBM4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_g8aAvRPw8RK2JJvBQ2W27226MMYiQQ-BiDCS81e1umyOBPfSOEP4p_kZnbj8EUd543bab6cx0ZvoxvwF4qyX50Vzwwqmco4cw3OXC8aTIgiqMCXGgfOe9YTo4UF8Pk8M5uGxzYehZZWsTZ4a6HBd0Rr5GwGyxRH9mPp3-5FQ1im5X2xIatVrs-Itz3LJNPm5_Qfm-E2Jrc39jwJuqArzAzcCUJyY1kQwuaKkDOjtNIYrSwiOdRYn-XPgy8j7xIcNYP1V5oqUpM6RZ6eDzIPG_92BeUUZrD-Y_bw6_fe9OddD2x0pHDYYQ0ryGFkHyGP0Al1xSxvZV93cjpr35NPOv-9mZ29t6CAtNvMrWawVbhDlfPYLFxiJM2EoDW736GD6ss6JDf66TO9k4sI0RPRLldNTLjvNz-lQjOfuSod3Frfp0dPIEDu6EiU-hV40r_xxYLHKvS2WCc5FyZXAe5RyXpUxd6jMh-vC-5ZgtGtxyKp9xbGf7F5NaYrElFltpkcV9WOkGnNaQHf_vutyKwDZrd2L_aFof3nTNuOroKiWv_PgM-2AUprSKjL6lD_JISpUmOIVntVQ7egSV1YlM1gd9Td5dB0L9vt5SHY1m6N8YdQiV4MjVVjOukP7vaS7dPs3XcH-wv7drd7eHOy_gAYaEik6vhVmG3vTXmX-JYdfUvWp0ncGPu15evwFpTT04
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkCouVYE-tlBIpR7g4JLYju2oJ7RlBZSiHorEzYpjW4tEs6gb1L_PzOahbqGVuMZjyZ7JeD57xp8BPmpBcbTkrHKyZBghDHMldyyviigrY2IW6b7ztwt1cinPrvKrrjZn3le79ynJ9k4DsTTVzeGtj62LG3WIbiZYhosrE0wY9QzWJMU9ytWq8XDEggtxJnXaEfo80m85Fj0AmA_rJP9Kli5i0OQlvOjAY3LUWnsDVkK9CRude86T_Y5D-mAT1glEthzMW_D5KKkGXub22mUyi8l4SuWbjA5hk5vyN31qOZaDT3BFxE10M_35Ci4nxz_GJ6x7NIFVuNdpWG6USUV0UQsdMZZrQmBS84BmqDzCFR58GkIeYoFbGSXLXAvjCzSJ1DGUUbyG1XpWh7eQZLwM2ksTnUul89EFjP2Z90I5FQrOR_CpV5-tOkZxetjixi52FkZZ0rclfVthUd8j2B863LZkGv8W3entYTuvmlsi58sEYhozgg9DM_oDJTnKOszuUAbxkdQyNfo_MqgjIaTKcQpvWhMP4-H04E1qihHoJeMPAsTHvdxSX08XvNyIB7jMsedB_5v8MfTHp_nuCbJ78Pz7l4k9P734ug3rCNwknTFzswOrza-78B7BUeN2Fy5wD6dKBoU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+characterization+of+Chover-type+law+of+iterated+logarithm&rft.jtitle=SpringerPlus&rft.au=Li%2C+Deli&rft.au=Chen%2C+Pingyan&rft.date=2014-07-28&rft.pub=Springer+Nature+B.V&rft.eissn=2193-1801&rft.volume=3&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1186%2F2193-1801-3-386&rft.externalDocID=4312878891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-1801&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-1801&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-1801&client=summon