A characterization of Chover-type law of iterated logarithm
Let 0 < α ≤ 2 and − ∞ < β < ∞ . Let { X n ; n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1 +⋯+ X n , n ≥ 1. We say X satisfies the ( α , β )-Chover-type law of the iterated logarithm (and write X ∈ C T L I L ( α , β )) if limsup n → ∞ S n n 1...
Saved in:
Published in | SpringerPlus Vol. 3; no. 1; pp. 386 - 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
28.07.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-1801 2193-1801 |
DOI | 10.1186/2193-1801-3-386 |
Cover
Abstract | Let 0 <
α
≤ 2 and −
∞
<
β
<
∞
. Let {
X
n
;
n
≥ 1} be a sequence of independent copies of a real-valued random variable
X
and set
S
n
=
X
1
+⋯+
X
n
,
n
≥ 1. We say
X
satisfies the (
α
,
β
)-Chover-type law of the iterated logarithm (and write
X
∈
C
T
L
I
L
(
α
,
β
)) if
limsup
n
→
∞
S
n
n
1
/
α
(
log
log
n
)
−
1
=
e
β
almost surely. This paper is devoted to a characterization of
X
∈
C
T
L
I
L
(
α
,
β
). We obtain sets of necessary and sufficient conditions for
X
∈
C
T
L
I
L
(
α
,
β
) for the five cases:
α
= 2 and 0 <
β
<
∞
,
α
= 2 and
β
= 0, 1<
α
<2 and −
∞
<
β
<
∞
,
α
= 1 and −
∞
<
β
<
∞
, and 0 <
α
<1 and −
∞
<
β
<
∞
. As for the case where
α
= 2 and −
∞
<
β
<0, it is shown that
X
∉
C
T
L
I
L
(2,
β
) for any real-valued random variable
X
. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e.,
X
∈
C
T
L
I
L
(
α
,1/
α
)) is given; that is,
X
∈
C
T
L
I
L
(
α
,1/
α
) if and only if
inf
b
:
E
|
X
|
α
(
log
(
e
∨
|
X
|
)
)
bα
<
∞
=
1
/
α
where
EX
=
0
whenever 1<
α
≤ 2.
Mathematics Subject Classification (2000)
Primary: 60F15; Secondary: 60G50 |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let 0 < [alpha] [less than or equal to] 2 and - ∞ <[beta] <∞. Let {X n;n [greater than or equal to] 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1++X n, n [greater than or equal to] 1. We say X satisfies the ([alpha],[beta])-Chover-type law of the iterated logarithm (and write XC T L I L([alpha],[beta])) if ... almost surely. This paper is devoted to a characterization of X C T L I L([alpha],[beta]). We obtain sets of necessary and sufficient conditions for XC T L I L([alpha],[beta]) for the five cases: [alpha] = 2 and 0 < [beta] <∞, [alpha] = 2 and [beta] = 0, 1<[alpha]<2 and -∞<[beta]<∞, [alpha] = 1 and -∞ <[beta] <∞, and 0 < [alpha] <1 and -∞ <[beta] <∞. As for the case where [alpha] = 2 and -∞ <[beta] <0, it is shown that XC T L I L(2,[beta]) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., XC T L I L([alpha],1/[alpha])) is given; that is, XC T L I L([alpha],1/[alpha]) if and only if ... where ... whenever 1< [alpha] [less than or equal to] 2. Mathematics Subject Classification (2000) Primary: 60F15; Secondary: 60G50 Let 0 < α ≤ 2 and - ∞ <β <∞. Let {X n ;n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1+⋯+X n , n ≥ 1. We say X satisfies the (α,β)-Chover-type law of the iterated logarithm (and write X∈C T L I L(α,β)) if [Formula: see text] almost surely. This paper is devoted to a characterization of X ∈C T L I L(α,β). We obtain sets of necessary and sufficient conditions for X∈C T L I L(α,β) for the five cases: α = 2 and 0 < β <∞, α = 2 and β = 0, 1<α<2 and -∞<β<∞, α = 1 and -∞ <β <∞, and 0 < α <1 and -∞ <β <∞. As for the case where α = 2 and -∞ <β <0, it is shown that X∉C T L I L(2,β) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X∈C T L I L(α,1/α)) is given; that is, X∈C T L I L(α,1/α) if and only if [Formula: see text] where [Formula: see text] whenever 1< α ≤ 2. Primary: 60F15; Secondary: 60G50. Let 0 < α ≤ 2 and − ∞ < β < ∞ . Let { X n ; n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1 +⋯+ X n , n ≥ 1. We say X satisfies the ( α , β )-Chover-type law of the iterated logarithm (and write X ∈ C T L I L ( α , β )) if limsup n → ∞ S n n 1 / α ( log log n ) − 1 = e β almost surely. This paper is devoted to a characterization of X ∈ C T L I L ( α , β ). We obtain sets of necessary and sufficient conditions for X ∈ C T L I L ( α , β ) for the five cases: α = 2 and 0 < β < ∞ , α = 2 and β = 0, 1< α <2 and − ∞ < β < ∞ , α = 1 and − ∞ < β < ∞ , and 0 < α <1 and − ∞ < β < ∞ . As for the case where α = 2 and − ∞ < β <0, it is shown that X ∉ C T L I L (2, β ) for any real-valued random variable X . As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X ∈ C T L I L ( α ,1/ α )) is given; that is, X ∈ C T L I L ( α ,1/ α ) if and only if inf b : E | X | α ( log ( e ∨ | X | ) ) bα < ∞ = 1 / α where EX = 0 whenever 1< α ≤ 2. Mathematics Subject Classification (2000) Primary: 60F15; Secondary: 60G50 Let 0 < alpha less than or equal to 2 and - infinity < beta < infinity . Let {X n ; n greater than or equal to 1} be a sequence of independent copies of a real-valued random variable X and set S n = X sub(1)++X n , n greater than or equal to 1. We say X satisfies the ( alpha , beta )-Chover-type law of the iterated logarithm (and write XC T L I L( alpha , beta )) if lim sup sub(n arrow right infinity )|S sub(n/n) super(1/ alpha )| super((log log)n) super(-1) = e super( beta ) almost surely. This paper is devoted to a characterization of X C T L I L( alpha , beta ). We obtain sets of necessary and sufficient conditions for XC T L I L( alpha , beta ) for the five cases: alpha = 2 and 0 < beta < infinity , alpha = 2 and beta = 0, 1< alpha <2 and - infinity < beta < infinity , alpha = 1 and - infinity < beta < infinity , and 0 < alpha <1 and - infinity < beta < infinity . As for the case where alpha = 2 and - infinity < beta <0, it is shown that XC T L I L(2, beta ) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., XC T L I L( alpha ,1/ alpha )) is given; that is, XC T L I L( alpha ,1/ alpha ) if and only if inf {b: [E](|X| super(a)/(log(eV|X|)) super(ba)) < infinity } = 1/ alpha where [E]X = 0 whenever 1< alpha less than or equal to 2. Mathematics Subject Classification (2000): Primary: 60F15; Secondary: 60G50 Let 0 < α ≤ 2 and - ∞ <β <∞. Let {X n ;n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1+⋯+X n , n ≥ 1. We say X satisfies the (α,β)-Chover-type law of the iterated logarithm (and write X∈C T L I L(α,β)) if [Formula: see text] almost surely. This paper is devoted to a characterization of X ∈C T L I L(α,β). We obtain sets of necessary and sufficient conditions for X∈C T L I L(α,β) for the five cases: α = 2 and 0 < β <∞, α = 2 and β = 0, 1<α<2 and -∞<β<∞, α = 1 and -∞ <β <∞, and 0 < α <1 and -∞ <β <∞. As for the case where α = 2 and -∞ <β <0, it is shown that X∉C T L I L(2,β) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X∈C T L I L(α,1/α)) is given; that is, X∈C T L I L(α,1/α) if and only if [Formula: see text] where [Formula: see text] whenever 1< α ≤ 2.ABSTRACTLet 0 < α ≤ 2 and - ∞ <β <∞. Let {X n ;n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1+⋯+X n , n ≥ 1. We say X satisfies the (α,β)-Chover-type law of the iterated logarithm (and write X∈C T L I L(α,β)) if [Formula: see text] almost surely. This paper is devoted to a characterization of X ∈C T L I L(α,β). We obtain sets of necessary and sufficient conditions for X∈C T L I L(α,β) for the five cases: α = 2 and 0 < β <∞, α = 2 and β = 0, 1<α<2 and -∞<β<∞, α = 1 and -∞ <β <∞, and 0 < α <1 and -∞ <β <∞. As for the case where α = 2 and -∞ <β <0, it is shown that X∉C T L I L(2,β) for any real-valued random variable X. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e., X∈C T L I L(α,1/α)) is given; that is, X∈C T L I L(α,1/α) if and only if [Formula: see text] where [Formula: see text] whenever 1< α ≤ 2.Primary: 60F15; Secondary: 60G50.MATHEMATICS SUBJECT CLASSIFICATION 2000Primary: 60F15; Secondary: 60G50. |
ArticleNumber | 386 |
Author | Chen, Pingyan Li, Deli |
Author_xml | – sequence: 1 givenname: Deli surname: Li fullname: Li, Deli organization: Department of Mathematical Sciences, Lakehead University – sequence: 2 givenname: Pingyan surname: Chen fullname: Chen, Pingyan email: tchenpy@jnu.edu.cn organization: Department of Mathematics, Jinan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25133089$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMovtfupODGTTXPJkUQZPAFghtdh9jezEQ6zZhkFP31po7KKIjZJNx853DvPVtotfc9ILRH8BEhqjqmpGYlUZiUrGSqWkGb35XVpfcG2o3xEedTScIlXkcbVBDGsKo30clZ0UxMME2C4N5Mcr4vvC1GE_8MoUyvMyg68zKUXCZMgrbo_NgElybTHbRmTRdh9_PeRvcX53ejq_Lm9vJ6dHZTNrwWqRSqUpjZByuZtLRmUmCluKRAhGpaIimFFgMIsDWtcMWNkEy1NbEtlxaMZdvodOE7mz9MoW2gT8F0ehbc1IRX7Y3TP396N9Fj_6w5YZSLOhscfhoE_zSHmPTUxQa6zvTg51HnZSrGeCXo_6gQnEuOlczowS_00c9DnzcxGFaESUVVpvaXm__u-iuCDIgF0AQfYwCrG5c-gsizuE4TrIe09ZCnHvLUTOe0s-74l-7L-m8FXihiJvsxhKWG_5C8AySzt_A |
CitedBy_id | crossref_primary_10_1016_j_spl_2015_10_007 crossref_primary_10_1016_j_spl_2016_09_015 |
Cites_doi | 10.1090/S0002-9947-1977-0455093-4 10.1007/BF01950273 10.1016/S0167-7152(02)00234-1 10.1214/009117905000000198 10.1214/aop/1176996655 10.1007/PL00008729 10.1016/j.spl.2003.08.009 10.2307/2371837 10.1090/S0002-9939-1966-0189096-2 10.1090/S0002-9939-1969-0251772-3 10.11650/twjm/1500406538 |
ContentType | Journal Article |
Copyright | Li and Chen; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. SpringerPlus is a copyright of Springer, 2014. Li and Chen; licensee Springer. 2014 |
Copyright_xml | – notice: Li and Chen; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. – notice: SpringerPlus is a copyright of Springer, 2014. – notice: Li and Chen; licensee Springer. 2014 |
DBID | C6C AAYXX CITATION NPM 3V. 7X2 8FE 8FG 8FH 8FK ABJCF AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ JQ2 K7- KB. L6V LK8 M0K M7P M7S P5Z P62 PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1186/2193-1801-3-386 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Agricultural Science Database PubMed Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Sciences (General) |
EISSN | 2193-1801 |
EndPage | 7 |
ExternalDocumentID | PMC4132459 4312878891 25133089 10_1186_2193_1801_3_386 |
Genre | Journal Article |
GroupedDBID | -A0 0R~ 4.4 40G 53G 5VS 7X2 7XC 8CJ 8FE 8FG 8FH AAKKN ABEEZ ABJCF ACACY ACGFO ACGFS ACIWK ACPRK ACULB ADBBV ADINQ ADRAZ AEGXH AENEX AEUYN AFGXO AFKRA AFRAH AHBYD AHSBF AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ARAPS ATCPS BAWUL BBNVY BENPR BGLVJ BHPHI BKSAR C24 C6C CCPQU CZ9 D1I D1J D1K DIK EBS EJD GROUPED_DOAJ GX1 HCIFZ HH5 HYE HZ~ K6- K6V K7- KB. KC. KQ8 L6V LK5 LK8 M0K M48 M7P M7R M7S M~E O9- OK1 P62 PATMY PCBAR PDBOC PGMZT PTHSS PYCSY RNS RPM RSV SHS SOJ AAYXX CITATION PHGZM PHGZT 2VQ ABDBF ACUHS NPM 3V. 8FK AZQEC DWQXO GNUQQ JQ2 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c495t-586803fbf737f29375088472e158cd1722ed0ee5ef926064a5738d91fd47feaf3 |
IEDL.DBID | 8FG |
ISSN | 2193-1801 |
IngestDate | Thu Aug 21 18:13:28 EDT 2025 Fri Sep 05 11:29:13 EDT 2025 Fri Sep 05 09:11:34 EDT 2025 Sat Aug 23 14:04:57 EDT 2025 Thu Apr 03 07:01:20 EDT 2025 Tue Jul 01 01:21:42 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Fri Feb 21 02:35:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ( , Chover-type law of the iterated logarithm Symmetric stable distribution with exponent Sums of i.i.d. random variables (α,β)-Chover-type law of the iterated logarithm Symmetric stable distribution with exponent α |
Language | English |
License | This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-586803fbf737f29375088472e158cd1722ed0ee5ef926064a5738d91fd47feaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1186/2193-1801-3-386 |
PMID | 25133089 |
PQID | 1866137828 |
PQPubID | 2034663 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132459 proquest_miscellaneous_1868334652 proquest_miscellaneous_1554474087 proquest_journals_1866137828 pubmed_primary_25133089 crossref_citationtrail_10_1186_2193_1801_3_386 crossref_primary_10_1186_2193_1801_3_386 springer_journals_10_1186_2193_1801_3_386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-28 |
PublicationDateYYYYMMDD | 2014-07-28 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: Heidelberg |
PublicationTitle | SpringerPlus |
PublicationTitleAbbrev | SpringerPlus |
PublicationTitleAlternate | Springerplus |
PublicationYear | 2014 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Chover (CR3) 1966; 17 Einmahl, Li (CR4) 2005; 33 Vasudeva (CR12) 1984; 44 Heyde (CR6) 1969; 23 Chen, Hu (CR2) 2012; 16 Kuelbs, Kurtz (CR7) 1974; 2 Pakshirajan, Vasudeva (CR8) 1977; 232 Chen (CR1) 2002; 60 Scheffler (CR11) 2000; 116 Peng, Qi (CR9) 2003; 65 Feller (CR5) 1946; 68 Qi, Cheng (CR10) 1996; 17 Y Qi (1116_CR10) 1996; 17 U Einmahl (1116_CR4) 2005; 33 RP Pakshirajan (1116_CR8) 1977; 232 J Chover (1116_CR3) 1966; 17 CC Heyde (1116_CR6) 1969; 23 R Vasudeva (1116_CR12) 1984; 44 P Chen (1116_CR1) 2002; 60 P Chen (1116_CR2) 2012; 16 L Peng (1116_CR9) 2003; 65 J Kuelbs (1116_CR7) 1974; 2 W Feller (1116_CR5) 1946; 68 H-P Scheffler (1116_CR11) 2000; 116 |
References_xml | – volume: 232 start-page: 33 year: 1977 end-page: 42 ident: CR8 article-title: A law of the iterated logarithm for stable summands publication-title: Tran Amer Math Soc doi: 10.1090/S0002-9947-1977-0455093-4 – volume: 44 start-page: 215 year: 1984 end-page: 221 ident: CR12 article-title: Chover’s law of the iterated logarithm and weak convergence publication-title: Acta Math Hung doi: 10.1007/BF01950273 – volume: 60 start-page: 367 year: 2002 end-page: 375 ident: CR1 article-title: Limiting behavior of weighted sums with stable distributions publication-title: Statist Probab Lett doi: 10.1016/S0167-7152(02)00234-1 – volume: 33 start-page: 1601 year: 2005 end-page: 1624 ident: CR4 article-title: Some results on two-sided LIL behavior publication-title: Ann Probab doi: 10.1214/009117905000000198 – volume: 16 start-page: 217 year: 2012 end-page: 236 ident: CR2 article-title: Limiting behavior for random elements with heavy tail publication-title: Taiwanese J Math – volume: 2 start-page: 387 year: 1974 end-page: 407 ident: CR7 article-title: Berry-esseen estimates in Hilbert space and an application to the law of the iterated logarithm publication-title: Ann Probab doi: 10.1214/aop/1176996655 – volume: 17 start-page: 195 issue: A year: 1996 end-page: 206 ident: CR10 article-title: On the law of the iterated logarithm for the partial sum in the domain of attraction of stable distribution publication-title: Chin Ann Math – volume: 116 start-page: 257 year: 2000 end-page: 271 ident: CR11 article-title: A law of the iterated logarithm for heavy-tailed random vectors publication-title: Probab Theory Relat Fields doi: 10.1007/PL00008729 – volume: 65 start-page: 401 year: 2003 end-page: 410 ident: CR9 article-title: Chover-type laws of the iterated logarithm for weighted sums publication-title: Statist Probab Lett doi: 10.1016/j.spl.2003.08.009 – volume: 68 start-page: 257 year: 1946 end-page: 262 ident: CR5 article-title: A limit theoerm for random variables with infinite moments publication-title: Amer J Math doi: 10.2307/2371837 – volume: 17 start-page: 441 year: 1966 end-page: 443 ident: CR3 article-title: A law of the iterated logarithm for stable summands publication-title: Proc Amer Math Soc doi: 10.1090/S0002-9939-1966-0189096-2 – volume: 23 start-page: 85 year: 1969 end-page: 90 ident: CR6 article-title: A note concerning behaviour of iterated logarithm type publication-title: Proc Amer Math Soc doi: 10.1090/S0002-9939-1969-0251772-3 – volume: 16 start-page: 217 year: 2012 ident: 1116_CR2 publication-title: Taiwanese J Math doi: 10.11650/twjm/1500406538 – volume: 44 start-page: 215 year: 1984 ident: 1116_CR12 publication-title: Acta Math Hung doi: 10.1007/BF01950273 – volume: 116 start-page: 257 year: 2000 ident: 1116_CR11 publication-title: Probab Theory Relat Fields doi: 10.1007/PL00008729 – volume: 60 start-page: 367 year: 2002 ident: 1116_CR1 publication-title: Statist Probab Lett doi: 10.1016/S0167-7152(02)00234-1 – volume: 17 start-page: 441 year: 1966 ident: 1116_CR3 publication-title: Proc Amer Math Soc doi: 10.1090/S0002-9939-1966-0189096-2 – volume: 65 start-page: 401 year: 2003 ident: 1116_CR9 publication-title: Statist Probab Lett doi: 10.1016/j.spl.2003.08.009 – volume: 17 start-page: 195 issue: A year: 1996 ident: 1116_CR10 publication-title: Chin Ann Math – volume: 68 start-page: 257 year: 1946 ident: 1116_CR5 publication-title: Amer J Math doi: 10.2307/2371837 – volume: 232 start-page: 33 year: 1977 ident: 1116_CR8 publication-title: Tran Amer Math Soc doi: 10.1090/S0002-9947-1977-0455093-4 – volume: 33 start-page: 1601 year: 2005 ident: 1116_CR4 publication-title: Ann Probab doi: 10.1214/009117905000000198 – volume: 2 start-page: 387 year: 1974 ident: 1116_CR7 publication-title: Ann Probab doi: 10.1214/aop/1176996655 – volume: 23 start-page: 85 year: 1969 ident: 1116_CR6 publication-title: Proc Amer Math Soc doi: 10.1090/S0002-9939-1969-0251772-3 |
SSID | ssj0000671470 |
Score | 1.9647496 |
Snippet | Let 0 <
α
≤ 2 and −
∞
<
β
<
∞
. Let {
X
n
;
n
≥ 1} be a sequence of independent copies of a real-valued random variable
X
and set
S
n
=
X
1
+⋯+
X
n
,
n
≥ 1. We... Let 0 < α ≤ 2 and - ∞ <β <∞. Let {X n ;n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1+⋯+X n , n ≥ 1. We say X... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let 0 < [alpha] [less than or equal to] 2 and - ∞ <[beta] <∞. Let {X n;n [greater... Let 0 < alpha less than or equal to 2 and - infinity < beta < infinity . Let {X n ; n greater than or equal to 1} be a sequence of independent copies of a... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 386 |
SubjectTerms | Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Statistics |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA46X3wR58_plAo-uIfMNkmTFBGR4RiCPjnYW2nahAmz0zlR_3svbVadzr02F0jucrnvmuQ7hE4FtXE0IThVLMEQISRWCVE4TCPDUilNYOx757t73uuz20E4-C4H5BT4ujC1s_Wk-pNR--Pl8woc_rJweMnPwekoDmCrxRRTyVfRGoQlbjOxO4f13bYcMOE7ep8F_eYj0x-4-ffW5K-j0yIidTfRhoOS3nVp-zpa0fkWqjtnffXOHKN0axtdXHtpRcxcvrv0xsbrDO39TWz_wnqj5N1-KkmWdebBlghZ9HT4tIP63ZuHTg-7qgk4hWRnikPJpU-NMoIKA8FcWAjGBNFghzQDvEJ05msdahNBLsNZEgoqswhswoTRiaG7qJaPc72PvIAkWmRMGqV8pjKjNAT_IMsoV1xHhDRQe6axOHWU4rayxSguUgvJY6vi2Ko4pjGouIHOqg7PJZvG_6LNmQni2aqILTtfQAHUyAY6qZrBIewpR5Lr8RvIAEBigvlSLJEBHVHKeAhT2CutWo2H2Io3vowaSMzZuxKwhNzzLfnjsCDmBkBAWAg9W7OV8WPoi6d5sHyah2gdEBqzP5OJbKLadPKmjwAFTdVxsbq_ACx8Aj0 priority: 102 providerName: Scholars Portal – databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 dbid: 40G link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPYivl1fVPDgHqJtkiYpnmTxgaAnhb2Vpk1YQbuiK_59Z_rC9QVemwmkM5mZL69vAA61oDyacZZbmTHMEIbZjFsW54mXuTE-8vTe-eZWXd3L61E8moOofQtT3XZvjySrSF25tVEn6FqCRRhQmWDCqHlYJC4xKlogw8tuWwWDbyR12JD4_NBvNv98A5Xf70Z-OSCt8s7FMiw1gDE4qy28AnOuXIWVxiVfg6OGN3qwCj0CjjXv8hqcngV5x8VcP7UMJj4YjunKJqON1-Axe6dPNa-yKwKMgrhwno6f1uH-4vxueMWaQgksx_XNlMVGmVB467XQHvO3JtQlNXeo-rxAiMJdEToXO5_g8kXJLNbCFAmaQWrvMi82YKGclG4LgohnThfSeGtDaQtvHeb7qCiEssolnPfhuFVfmjcs4lTM4jGtVhNGpaTvlPSdihT13YejrsNzTaDxu-hua4-08aTXlAj5IoE4xvThoGtGH6CDjax0kzeUQUwktQyN_kMGdSSEVDH-wmZt4m48nIrchCbpg54xfidAHNyzLeXDuOLiRgzAZYw9B-00-TT0n39z-x-yO9BDhCZpM5mbXViYvry5PURBU7tfzfsPugj_MQ priority: 102 providerName: Springer Nature |
Title | A characterization of Chover-type law of iterated logarithm |
URI | https://link.springer.com/article/10.1186/2193-1801-3-386 https://www.ncbi.nlm.nih.gov/pubmed/25133089 https://www.proquest.com/docview/1866137828 https://www.proquest.com/docview/1554474087 https://www.proquest.com/docview/1868334652 https://pubmed.ncbi.nlm.nih.gov/PMC4132459 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuPRSFfralq5SqQc4uCT2JHbUQwUrFlQJVFVF4hbFsa1FolnaXdS_35nEm_Iql0iJ7ciesedl-xuAj1qxHq2laCzWgjSEEbaWVuRNGbAxJmSB7zufnBbHZ_j1PD-PAbdFPFa5komdoHbzhmPkewzMlinSZ-bL1S_BWaN4dzWm0FiDjYw0Dc9zMz0aYiwkiTPUaUT0oT_s0fpUIiOpLJRQfH_6pjK6Z2HePyh5Z7e0U0LT5_AsWo_Jfs_uTXji2y3YjOtzkexEEOndF_B5P2kGLOb-qmUyD8lkxkc2BQdek8v6D3_qcZW9S0gKkuO8nP18CWfTwx-TYxETJYiG_JulyE1hUhVs0EoH0t-arS7U0hPpG0cmivQu9T73oST3pcA618q4ktiAOvg6qFew3s5b_waSTNZeOzTB2hStC9YT1TPnVGELX0o5gk8rilVNRBHnZBaXVedNmKJiEldM4kpVROIR7AwNrnoAjf9X3V6xoIoraVH94_sIPgzFtAZ4Y6Nu_fya6pBNhBpTox-pQzRSCouchvC65-rQH8lJblJTjkDf4vdQgTG4b5e0F7MOi5tsAIk5tdxdzYwbXX94mG8fH-Y7eEpGGXL8WJptWF_-vvbvyfBZ2jGsYXo07ub4GDYODk-_fae3iUR-FhN6nqD5C3pqBM4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_g8aAvRPw8RK2JJvBQ2W27226MMYiQQ-BiDCS81e1umyOBPfSOEP4p_kZnbj8EUd543bab6cx0ZvoxvwF4qyX50Vzwwqmco4cw3OXC8aTIgiqMCXGgfOe9YTo4UF8Pk8M5uGxzYehZZWsTZ4a6HBd0Rr5GwGyxRH9mPp3-5FQ1im5X2xIatVrs-Itz3LJNPm5_Qfm-E2Jrc39jwJuqArzAzcCUJyY1kQwuaKkDOjtNIYrSwiOdRYn-XPgy8j7xIcNYP1V5oqUpM6RZ6eDzIPG_92BeUUZrD-Y_bw6_fe9OddD2x0pHDYYQ0ryGFkHyGP0Al1xSxvZV93cjpr35NPOv-9mZ29t6CAtNvMrWawVbhDlfPYLFxiJM2EoDW736GD6ss6JDf66TO9k4sI0RPRLldNTLjvNz-lQjOfuSod3Frfp0dPIEDu6EiU-hV40r_xxYLHKvS2WCc5FyZXAe5RyXpUxd6jMh-vC-5ZgtGtxyKp9xbGf7F5NaYrElFltpkcV9WOkGnNaQHf_vutyKwDZrd2L_aFof3nTNuOroKiWv_PgM-2AUprSKjL6lD_JISpUmOIVntVQ7egSV1YlM1gd9Td5dB0L9vt5SHY1m6N8YdQiV4MjVVjOukP7vaS7dPs3XcH-wv7drd7eHOy_gAYaEik6vhVmG3vTXmX-JYdfUvWp0ncGPu15evwFpTT04 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkCouVYE-tlBIpR7g4JLYju2oJ7RlBZSiHorEzYpjW4tEs6gb1L_PzOahbqGVuMZjyZ7JeD57xp8BPmpBcbTkrHKyZBghDHMldyyviigrY2IW6b7ztwt1cinPrvKrrjZn3le79ynJ9k4DsTTVzeGtj62LG3WIbiZYhosrE0wY9QzWJMU9ytWq8XDEggtxJnXaEfo80m85Fj0AmA_rJP9Kli5i0OQlvOjAY3LUWnsDVkK9CRude86T_Y5D-mAT1glEthzMW_D5KKkGXub22mUyi8l4SuWbjA5hk5vyN31qOZaDT3BFxE10M_35Ci4nxz_GJ6x7NIFVuNdpWG6USUV0UQsdMZZrQmBS84BmqDzCFR58GkIeYoFbGSXLXAvjCzSJ1DGUUbyG1XpWh7eQZLwM2ksTnUul89EFjP2Z90I5FQrOR_CpV5-tOkZxetjixi52FkZZ0rclfVthUd8j2B863LZkGv8W3entYTuvmlsi58sEYhozgg9DM_oDJTnKOszuUAbxkdQyNfo_MqgjIaTKcQpvWhMP4-H04E1qihHoJeMPAsTHvdxSX08XvNyIB7jMsedB_5v8MfTHp_nuCbJ78Pz7l4k9P734ug3rCNwknTFzswOrza-78B7BUeN2Fy5wD6dKBoU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+characterization+of+Chover-type+law+of+iterated+logarithm&rft.jtitle=SpringerPlus&rft.au=Li%2C+Deli&rft.au=Chen%2C+Pingyan&rft.date=2014-07-28&rft.pub=Springer+Nature+B.V&rft.eissn=2193-1801&rft.volume=3&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1186%2F2193-1801-3-386&rft.externalDocID=4312878891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-1801&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-1801&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-1801&client=summon |