A characterization of Chover-type law of iterated logarithm
Let 0 < α ≤ 2 and − ∞ < β < ∞ . Let { X n ; n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S n = X 1 +⋯+ X n , n ≥ 1. We say X satisfies the ( α , β )-Chover-type law of the iterated logarithm (and write X ∈ C T L I L ( α , β )) if limsup n → ∞ S n n 1...
Saved in:
Published in | SpringerPlus Vol. 3; no. 1; pp. 386 - 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
28.07.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-1801 2193-1801 |
DOI | 10.1186/2193-1801-3-386 |
Cover
Loading…
Summary: | Let 0 <
α
≤ 2 and −
∞
<
β
<
∞
. Let {
X
n
;
n
≥ 1} be a sequence of independent copies of a real-valued random variable
X
and set
S
n
=
X
1
+⋯+
X
n
,
n
≥ 1. We say
X
satisfies the (
α
,
β
)-Chover-type law of the iterated logarithm (and write
X
∈
C
T
L
I
L
(
α
,
β
)) if
limsup
n
→
∞
S
n
n
1
/
α
(
log
log
n
)
−
1
=
e
β
almost surely. This paper is devoted to a characterization of
X
∈
C
T
L
I
L
(
α
,
β
). We obtain sets of necessary and sufficient conditions for
X
∈
C
T
L
I
L
(
α
,
β
) for the five cases:
α
= 2 and 0 <
β
<
∞
,
α
= 2 and
β
= 0, 1<
α
<2 and −
∞
<
β
<
∞
,
α
= 1 and −
∞
<
β
<
∞
, and 0 <
α
<1 and −
∞
<
β
<
∞
. As for the case where
α
= 2 and −
∞
<
β
<0, it is shown that
X
∉
C
T
L
I
L
(2,
β
) for any real-valued random variable
X
. As a special case of our results, a simple and precise characterization of the classical Chover law of the iterated logarithm (i.e.,
X
∈
C
T
L
I
L
(
α
,1/
α
)) is given; that is,
X
∈
C
T
L
I
L
(
α
,1/
α
) if and only if
inf
b
:
E
|
X
|
α
(
log
(
e
∨
|
X
|
)
)
bα
<
∞
=
1
/
α
where
EX
=
0
whenever 1<
α
≤ 2.
Mathematics Subject Classification (2000)
Primary: 60F15; Secondary: 60G50 |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2193-1801 2193-1801 |
DOI: | 10.1186/2193-1801-3-386 |