Ultrasonic self-calibrated method applied to monitoring of sol–gel transition
In many industrial processes where online control is necessary such as in the food industry, the real time monitoring of visco-elastic properties is essential to ensure the quantity of production. Acoustic methods have shown that reliable properties could be obtained from measurements of velocity an...
Saved in:
Published in | Ultrasonics Vol. 52; no. 5; pp. 622 - 627 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In many industrial processes where online control is necessary such as in the food industry, the real time monitoring of visco-elastic properties is essential to ensure the quantity of production. Acoustic methods have shown that reliable properties could be obtained from measurements of velocity and attenuation. This paper proposes a simple, real time ultrasound method for monitoring linear medium properties (phase velocity and attenuation) that vary in time. The method is based on a pulse echo measurement and is self-calibrated. Results on a silica gel are reported and the importance of taking into account the changes of the mechanical loading on the front face of the transducer will be shown. This is done through a modification of the emission and reception transfer parameters. The simultaneous measurement of the input and output currents and voltages enables these parameters to be calculated during the reaction. The variations of the transfer parameters are in the order of 6% and predominate other effects. The evolution of the ultrasonic longitudinal wave phase velocity and attenuation as a function of time allows the characteristic times of the chemical reaction to be determined. The results are well correlated with the gelation time measured by rheological method at low frequency. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0041-624X 1874-9968 |
DOI: | 10.1016/j.ultras.2011.12.008 |