Anterolateral Motor Cortex Connects with a Medial Subdivision of Ventromedial Thalamus through Cell Type-Specific Circuits, Forming an Excitatory Thalamo-Cortico-Thalamic Loop via Layer 1 Apical Tuft Dendrites of Layer 5B Pyramidal Tract Type Neurons
The anterolateral motor cortex (ALM) and ventral medial (VM) thalamus are functionally linked to support persistent activity during motor planning. We analyzed the underlying synaptic interconnections using optogenetics and electrophysiology in mice (female/male). In cortex, thalamocortical (TC) axo...
Saved in:
Published in | The Journal of neuroscience Vol. 38; no. 41; pp. 8787 - 8797 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
10.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The anterolateral motor cortex (ALM) and ventral medial (VM) thalamus are functionally linked to support persistent activity during motor planning. We analyzed the underlying synaptic interconnections using optogenetics and electrophysiology in mice (female/male). In cortex, thalamocortical (TC) axons from VM thalamus excited VM-projecting pyramidal tract (PT) neurons in layer 5B of ALM. These axons also strongly excited layer 2/3 neurons (which strongly excite PT neurons, as previously shown) but not VM-projecting corticothalamic (CT) neurons in layer 6. The strongest connections in the VM → PT circuit were localized to apical tuft dendrites of PT neurons, in layer 1. These tuft inputs were selectively augmented after blocking hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. In thalamus, axons from ALM PT neurons excited ALM-projecting VM neurons, located medially in VM. These axons provided weak input to neurons in mediodorsal nucleus, and little or no input either to neurons in the GABAergic reticular thalamic nucleus or to neurons in VM projecting to primary motor cortex (M1). Conversely, M1 PT axons excited M1- but not ALM-projecting VM neurons. Our findings indicate, first, a set of cell type-specific connections forming an excitatory thalamo-cortico-thalamic loop for ALM ↔ VM communication and a circuit-level substrate for supporting reverberant activity in this system. Second, a key feature of this loop is the prominent involvement of layer 1 synapses onto apical dendrites, a subcellular compartment with distinct signaling properties, including HCN-mediated gain control. Third, the segregation of the ALM ↔ VM loop from M1-related circuits of VM adds cellular-level support for the concept of parallel pathway organization in the motor system.
Anterolateral motor cortex (ALM), a higher-order motor area in the mouse, and ventromedial (VM) thalamus are anatomically and functionally linked, but their synaptic interconnections at the cellular level are unknown. Our results show that ALM pyramidal tract neurons monosynaptically excite ALM-projecting thalamocortical neurons in a medial subdivision of VM thalamus, and vice versa. The thalamo-cortico-thalamic loop formed by these recurrent connections constitutes a circuit-level substrate for supporting reverberant activity in this system. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: K.G., N.Y., K.S., and G.M.G.S. designed research; K.G. performed research; K.G., and G.M.G.S. analyzed data; K.G., K.S., and G.M.G.S. wrote the paper. |
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.1333-18.2018 |