A membrane-bound diacylglycerol kinase that selectively phosphorylates arachidonoyl-diacylglycerol. Distinction from cytosolic diacylglycerol kinase and comparison with the membrane-bound enzyme from Escherichia coli

The membrane-bound diacylglycerol kinase from Swiss 3T3 cells (M-DG kinase) was characterized with a mixed micellar assay system, and compared with the cytosolic diacylglycerol kinase from 3T3 cells and with the membrane-bound diacylglycerol kinase from Escherichia coli. M-DG kinase selectively phos...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 263; no. 3; pp. 1584 - 1592
Main Authors MacDonald, M L, Mack, K F, Williams, B W, King, W C, Glomset, J A
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 25.01.1988
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The membrane-bound diacylglycerol kinase from Swiss 3T3 cells (M-DG kinase) was characterized with a mixed micellar assay system, and compared with the cytosolic diacylglycerol kinase from 3T3 cells and with the membrane-bound diacylglycerol kinase from Escherichia coli. M-DG kinase selectively phosphorylated arachidonoyl-diacylglycerols, at a rate 2- to 8-fold higher than that for other naturally occurring long-chain diacylglycerols. In contrast, the cytosolic 3T3 enzyme exhibited little or no selectivity among long-chain diacylglycerols but had higher activity with more soluble substrates such as 1,2-didecanoylglycerol. Comparison of the properties of M-DG kinase with those of the bacterial membrane-bound enzyme revealed that selectivity for arachidonoyl-diacylglycerol was unique to the mammalian enzyme. All three kinases were activated by phosphatidylserine, but activation did not alter the arachidonoyl selectivity of M-DG kinase. Phosphatidylserine activated M-DG kinase by increasing Vm and decreasing the apparent Km for diacylglycerol. High concentrations of diacylglycerol reduced the Ka for phosphatidylserine, but did not abolish the phosphatidylserine requirement for maximum activity. Examination of the thermal lability of M-DG kinase revealed that this enzyme was rapidly and selectively inactivated by preincubation with its preferred substrate. This novel effect may have obscured previous attempts to discern substrate selectivity. Taken together, the results provide evidence that M-DG kinase is an arachidonoyl-diacylglycerol kinase that may participate in the formation of arachidonoyl-enriched species of phosphatidylinositol.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)57344-6