NOTE ON THE DIVISIBILITY OF THE CLASS NUMBER OF CERTAIN IMAGINARY QUADRATIC FIELDS
We prove that the class number of the imaginary quadratic field $\Q(\sqrt{2^{2k}-3^n})$ is divisible by n for any positive integers k and n with 22k < 3n, by using Y. Bugeaud and T. N. Shorey's result on Diophantine equations.
Saved in:
Published in | Glasgow mathematical journal Vol. 51; no. 1; pp. 187 - 191 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We prove that the class number of the imaginary quadratic field $\Q(\sqrt{2^{2k}-3^n})$ is divisible by n for any positive integers k and n with 22k < 3n, by using Y. Bugeaud and T. N. Shorey's result on Diophantine equations. |
---|---|
Bibliography: | istex:6E6043C268C0F121217A21F28D881C38E63C086C ark:/67375/6GQ-M1PHW5Q1-C ArticleID:00462 PII:S001708950800462X SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S001708950800462X |