Exosomes secreted by hypoxia-stimulated bone-marrow mesenchymal stem cells promote grafted tendon-bone tunnel healing in rat anterior cruciate ligament reconstruction model

After anterior cruciate ligament (ACL) reconstruction in clinic, firm and rapid integration of the grafted tendon into the bone tunnel remains a challenge. Exosomes from hypoxia-treated stem cells are beneficial for promoting angiogenesis and then coupling with osteogenesis. Therefore, exosomes from...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic translation Vol. 36; pp. 152 - 163
Main Authors Zhang, Tao, Yan, Shaohang, Song, Ya, Chen, Can, Xu, Daqi, Lu, Bangbao, Xu, Yan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Chinese Speaking Orthopaedic Society
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:After anterior cruciate ligament (ACL) reconstruction in clinic, firm and rapid integration of the grafted tendon into the bone tunnel remains a challenge. Exosomes from hypoxia-treated stem cells are beneficial for promoting angiogenesis and then coupling with osteogenesis. Therefore, exosomes from hypoxia-cultured bone-marrow mesenchymal stem cells (Hypo-Exos) may be a cell-free therapy for enhancing graft-bone incorporation after ACL reconstruction. Exosomes from normoxia-cultured bone-marrow mesenchymal stem cells (Norm-Exos) or Hypo-Exos were respectively cultured with human umbilical vein endothelial cells (HUVECs) for in-vitro evaluating their functions in HUVECs proliferation, migration, and tube formation. A total of 87 rats with single-bundle ACL reconstructions in the right knee were randomly allocated into 3 different treatments: phosphate-buffered saline (PBS) with the adhesive hydrogel injection as control (Ctrl), Norm-Exos with the adhesive hydrogel injection (Norm-Exos), and Hypo-Exos with the adhesive hydrogel injection (Hypo-Exos). At postoperative weeks 2, 4, or 8, the ACL graft-bone integrations were evaluated. Hypo-Exos was a better stimulator for in-vitro HUVECs proliferation, migration, and tube formation compared to PBS or Norm-Exos. Hypo-Exos within the adhesive hydrogel could be sustained-released at least 14 days around the peri-graft site. Radiologically, at week 4 or 8, femoral or tibial bone tunnel areas (BTA), as well as bone volume/total volume ratio (BV/TV) of the femoral or tibial peri-graft bone in the Hypo-Exos group, improved significantly better than these parameters of the Ctrl and Norm-Exos groups (P<0.05 for all). Histologically, the grafted tendon-bone interface in the Hypo-Exos group showed significantly higher histologic scores at week 4 or 8 as compared with the other groups (P<0.05 for all). Immunofluorescent staining verified that type H vessels were more abundant in the Hypo-Exos group when compared to the Ctrl or Norm-Exos group at week 2. Biomechanically, the Hypo-Exos group exhibited a significantly heightened failure load compared with the Ctrl and Norm-Exos groups (P<0.05 for all) at 8 weeks. Meanwhile, the stiffness in the Hypo-Exos group was the greatest among the three groups. Peri-graft Hypo-Exos injection accelerates grafted tendon-bone tunnel integration after ACL reconstruction by improving peri-graft bone microarchitecture.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2214-031X
2214-0328
DOI:10.1016/j.jot.2022.08.001