Towards operando computational modeling in heterogeneous catalysis

An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade. Experimental work has extended from ultra-high vacuum and low temperature towards operando conditions. These developments have motivated the computational c...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 47; no. 22; pp. 837 - 8348
Main Authors Grajciar, Lukáš, Heard, Christopher J, Bondarenko, Anton A, Polynski, Mikhail V, Meeprasert, Jittima, Pidko, Evgeny A, Nachtigall, Petr
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 12.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade. Experimental work has extended from ultra-high vacuum and low temperature towards operando conditions. These developments have motivated the computational community to move from standard descriptive computational models, based on inspection of the potential energy surface at 0 K and low reactant concentrations (0 K/UHV model), to more realistic conditions. The transition from 0 K/UHV to operando models has been backed by significant developments in computer hardware and software over the past few decades. New methodological developments, designed to overcome part of the gap between 0 K/UHV and operando conditions, include (i) global optimization techniques, (ii) ab initio constrained thermodynamics, (iii) biased molecular dynamics, (iv) microkinetic models of reaction networks and (v) machine learning approaches. The importance of the transition is highlighted by discussing how the molecular level picture of catalytic sites and the associated reaction mechanisms changes when the chemical environment, pressure and temperature effects are correctly accounted for in molecular simulations. It is the purpose of this review to discuss each method on an equal footing, and to draw connections between methods, particularly where they may be applied in combination. An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade.
Bibliography:Anton A. Bondarenko was born in Vyborg, Russia, in 1995. He graduated from Saint-Petersburg State University with a bachelor's degree in biology in 2017 and enrolled to master's programme at ITMO University the same year, where he joined the group of theoretical chemistry (TheoMAT) headed by Prof. Pidko. His research interests are machine learning, chemoinformatics, and automation of chemical calculations.
Prof. Petr Nachtigall completed his PhD in 1995 at the University of Pittsburgh. He then moved to Prague where he held a research position in Academy of Sciences of Czech Republic. In 2010 he moved to the Faculty of Science of the Charles University where he is currently Head of the Department of Physical and Macromolecular Chemistry. His research is focused on the theoretical investigation of surface properties of solids, related mainly to gas adsorption and catalytic processes involving microporous and nano-structured materials.
Mikhail V. Polynski (Moscow, Russia, 1990) graduated from the Higher Chemical College of the Russian Academy of Sciences in 2013. In 2013-2017 he followed a PhD program at Lomonosov Moscow State University and carried out research in computational chemistry and catalysis at Zelinsky Institute of Organic Chemistry, Moscow, under the guidance of Prof. Valentine Ananikov. Since Fall 2017 he has been assisting Prof. Pidko in building and leading the theoretical chemistry group (TheoMAT) at IITMO University, St. Petersburg, Russia. His main research interests are automation of computational chemistry research, ab initio MD, and theory of catalysis.
Christopher Heard is a postdoctoral researcher at the Charles University in Prague. As part of the CUCAM project, he currently investigates the stability and reactivity of zeolitic and layered oxide materials with ab initio thermodynamic techniques. Previously, he completed his BA and MSci (2010) at the University of Cambridge, followed by PhD studies under Prof. Roy Johnston at the University of Birmingham (2014), developing and employing global optimization tools for free and oxide-supported metal clusters. This was followed by a postdoctoral position in computational surface science at Chalmers University in Sweden (until 2016), involving heterogeneous catalysis and microkinetic modelling.
Evgeny A. Pidko (Moscow, Russia, 1982) received his PhD from Eindhoven University of Technology in 2008, wherein in 2011-2017 he was an Assistant Professor of Catalysis for Sustainability. Since 2016 he has been a part-time professor of theoretical chemistry at ITMO University, St. Petersburg. Since Fall 2017 he has been an Associate Professor and head of the Inorganic Systems Engineering group at Delft University of Technology. In his research he combines theory and experiment to study mechanisms of homogeneous and heterogeneous catalysts and guide the development of new and improved catalyst systems relevant to sustainable chemistry and energy technologies.
Lukáš Grajciar received his MSc and PhD degrees in chemistry from the Charles University in Prague in 2009 and 2013, respectively, developing and applying dispersion-corrected DFT methods for adsorption in zeolites and metal-organic frameworks. At his postdoctoral position at Jena University in Germany, he became involved in development of high-performance algorithms for ab initio treatment of large molecules and periodic system within the TURBOMOLE program, including implementation of a new tool for global structure optimization of clusters in confinement. Currently, he is a researcher at the Charles University in Prague, investigating reactivity of zeolites using biased ab initio molecular dynamics.
Jittima was born in Bangkok, Thailand. She received her BS degree in General Science and MS degree in Chemistry from Kasetsart University. She then worked as a research assistant in Nanoscale Simulation Laboratory at the National Nanotechnology Center. She is currently pursuing a PhD degree under the guidance of Professor Evgeny Pidko in the Department of Chemical Engineering at Delft University of Technology, The Netherlands. Her research interest focuses on computational heterogeneous catalysis.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0306-0012
1460-4744
1460-4744
DOI:10.1039/c8cs00398j