Short- and long-term effects of manganese, zinc and copper ions on nitrogen removal in nitritation-anammox process

This study provided a deep insight into the impacts of trace elements (Mn2+, Zn2+ and Cu2+) on nitritation-anammox process. For short-term exposure, all the three elements could improve the nitrogen removal rate (NRR) and the optimal concentrations were 2.0 mg/L, 2.0 mg/L and 0.5 mg/L for Mn2+, Zn2+...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 193; pp. 479 - 488
Main Authors Li, Huayu, Yao, Hong, Zhang, Dayi, Zuo, Lushen, Ren, Jia, Ma, Jinyuan, Pei, Jin, Xu, Yaru, Yang, Chengyong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study provided a deep insight into the impacts of trace elements (Mn2+, Zn2+ and Cu2+) on nitritation-anammox process. For short-term exposure, all the three elements could improve the nitrogen removal rate (NRR) and the optimal concentrations were 2.0 mg/L, 2.0 mg/L and 0.5 mg/L for Mn2+, Zn2+ and Cu2+, respectively. Accordingly, the NRRs were enhanced 54.62%, 45.93% and 44.09%. The long-term experiments were carried out in lab-scale sequencing batch reactors. The surprising results showed that only Mn2+ addition could enhance the long-term nitritation-anammox process, and the NRR increased from 0.35 ± 0.01 kg N/m3/d (control, no extra trace element addition) to 0.49 ± 0.03 kg N/m3/d. Vice versa, the amendment of Zn2+ reduced the NRR to 0.28 ± 0.02 kg N/m3/d, and Cu2+ had no significant effect on the NRR (0.36 ± 0.01 kg N/m3/d). From the analysis of microbial community structure, it was explained by the increasing abundance of anaerobic ammonium oxidizing bacteria (AnAOB) only in Mn2+ treatment, whereas Zn2+ predominantly promoted ammonium oxidizing bacteria (AOB). Additionally, the majority of Mn2+ was identified inside AnAOB cells, and Zn2+ and Cu2+ were mainly located in AOB. Our results indicated the synergistic effects of trace elements on nitritation-anammox, both short-term encouraging activities of AnAOB and long-term altering microbial community structure. This work implies the importance of trace elements addition in nitritation-anammox process. •Proper amendment of Mn, Zn and Cu enhances short-term nitritation-anammox performance.•Only Mn improves nitrogen removal in long-term nitritation-anammox.•Trace elements simultaneously encourage activities of AnAOB and alter microbial community in nitritation-anammox process.•Distinct metal impacts explained by distribution in EPS and intracellular components.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2017.11.002