Performance evaluation of a magnetorheological fluid variable valve

Abstract The present paper describes the conceptual design, simulation, and fabrication of a magnetorheological (MR) fluid variable-valve actuation (WA) system. Two set-ups, one for testing the conceptual design and the other for application of the MR valve on a real engine, have been developed. The...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Vol. 221; no. 1; pp. 83 - 93
Main Authors Hirani, H, Manjunatha, C S
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2007
Professional Engineering
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The present paper describes the conceptual design, simulation, and fabrication of a magnetorheological (MR) fluid variable-valve actuation (WA) system. Two set-ups, one for testing the conceptual design and the other for application of the MR valve on a real engine, have been developed. The test set-up measures the displacement of the valve, which operates by the cam-follower mechanism. The results of valve lifts at different speeds and control currents are presented. To implement the MR fluid VVA system, a four-stroke single-cylinder Kirloskar TV1 vertical diesel engine has been selected. Inlet and exhaust manifolds have been modelled to estimate volumetric efficiency. The equations governing the unsteady air flow in the ducts have been solved using the method of characteristics. A numerical code to simulate the entire gas exchange process has been developed, and the results have been compared with the experimental results. Further, this code has been used to identify the optimal valve lift requirements of the engine at various crankshaft speeds. The quantified requirements obtained have been used for the design of an MR fluid VVA system. A prototype MR VVA system has been developed. Experimental results are reported in the form of maximum valve lift variation with speed and d.c. current.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0954-4070
2041-2991
DOI:10.1243/09544070JAUTO408