Lipid rafts mediate the synaptic localization of alpha-synuclein

Alpha-synuclein contributes to the pathogenesis of Parkinson's disease (PD), but its precise role in the disorder and its normal function remain poorly understood. Consistent with a presumed role in neurotransmitter release and its prominent deposition in the dystrophic neurites of PD, alpha-sy...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 24; no. 30; pp. 6715 - 6723
Main Authors Fortin, Doris L, Troyer, Matthew D, Nakamura, Ken, Kubo, Shin-ichiro, Anthony, Malcolm D, Edwards, Robert H
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 28.07.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alpha-synuclein contributes to the pathogenesis of Parkinson's disease (PD), but its precise role in the disorder and its normal function remain poorly understood. Consistent with a presumed role in neurotransmitter release and its prominent deposition in the dystrophic neurites of PD, alpha-synuclein localizes almost exclusively to the nerve terminal. In brain extracts, however, alpha-synuclein behaves as a soluble, monomeric protein. Using a binding assay to characterize the association of alpha-synuclein with cell membranes, we find that alpha-synuclein binds saturably and with high affinity to characteristic intracellular structures that double label for components of lipid rafts. Biochemical analysis demonstrates the interaction of alpha-synuclein with detergent-resistant membranes and reveals a shift in electrophoretic mobility of the raft-associated protein. In addition, the A30P mutation associated with PD disrupts the interaction of alpha-synuclein with lipid rafts. Furthermore, we find that both the A30P mutation and raft disruption redistribute alpha-synuclein away from synapses, indicating an important role for raft association in the normal function of alpha-synuclein and its role in the pathogenesis of PD.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1594-04.2004