Mitochondrial inflexibility ignites tumor immunogenicity in postoperative glioblastoma
Cellular and molecular heterogeneity contributes to the insufficient immunogenicity of glioblastoma multiforme (GBM), a lethal malignancy characterized by post-resection relapse, ultimately leading to limited immune cell infiltration. Here, we report a strategy to boost tumor immunity by activating...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 6946 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cellular and molecular heterogeneity contributes to the insufficient immunogenicity of glioblastoma multiforme (GBM), a lethal malignancy characterized by post-resection relapse, ultimately leading to limited immune cell infiltration. Here, we report a strategy to boost tumor immunity by activating the endogenous cGAS-STING signaling pathway through in-situ manipulation of the mitochondrial electron transport chain (ETC), thereby augmenting the immune responsiveness of GBM. Under white light irradiation, the synthetic butterfly-shaped photosensitizer B-TTPy disrupts the mitochondrial ETC by producing excessive reactive oxygen species. Synergistically, inhibition of checkpoint kinase 1 amplifies ETC dysfunction, thus enhancing the cytotoxicity of B-TTPy against tumor cells. Our results demonstrate that the in-house-customized Mitochondrial Electron Alteration Nanoparticles in Glioblastoma (MEANING) efficiently activate innate and adaptive immune response by recruiting antigen-presenting cells and cytotoxic T cells to the surgical margin. Moreover, biodegradable hydrogel-medicated surgical cavity treatment with MEANING can reshape the immunosuppressive tumor microenvironment and eliminate residual GBM cells. In sum, our findings establish a local immune activation approach for GBM, to prevent postoperative tumor recurrence and identify ETC blockade as a promising therapeutic strategy for low-immunogenic tumors.
Cellular and molecular heterogeneity contributes to the insufficient immunogenicity of glioblastoma (GBM), ultimately leading to limited immune cell infiltration. Here this group reports a GBM therapeutic strategy by activating endogenous cGAS-STING signaling pathway by modulating mitochondrial electron transport chain thereby augmenting the immune responsiveness of GBM. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-025-62244-5 |