Cross-subject EEG signals-based emotion recognition using contrastive learning

Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual diffe...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 28295 - 17
Main Authors Alghamdi, Ahmed Mohammed, Ashraf, M. Usman, Bahaddad, Adel A., Almarhabi, Khalid Ali, Al Shehri, Waleed A., Daraz, Amil
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-13289-5

Cover

Abstract Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.
AbstractList Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.
Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.
Abstract Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.
ArticleNumber 28295
Author Al Shehri, Waleed A.
Ashraf, M. Usman
Alghamdi, Ahmed Mohammed
Almarhabi, Khalid Ali
Bahaddad, Adel A.
Daraz, Amil
Author_xml – sequence: 1
  givenname: Ahmed Mohammed
  surname: Alghamdi
  fullname: Alghamdi, Ahmed Mohammed
  email: amalghamdi@uj.edu.sa
  organization: Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah
– sequence: 2
  givenname: M. Usman
  surname: Ashraf
  fullname: Ashraf, M. Usman
  organization: Department of Computer Science, GC Women University Sialkot
– sequence: 3
  givenname: Adel A.
  surname: Bahaddad
  fullname: Bahaddad, Adel A.
  organization: Department of Information System, Faculty of Computing and Information Technology, King Abdulaziz University
– sequence: 4
  givenname: Khalid Ali
  surname: Almarhabi
  fullname: Almarhabi, Khalid Ali
  organization: Department of Computer Science, College of Engineering and Computing in Al-Qunfudah, Umm Al-Qura University
– sequence: 5
  givenname: Waleed A.
  surname: Al Shehri
  fullname: Al Shehri, Waleed A.
  organization: Department of Computing, College of Engineering and Computing in Al-Lith, Umm Al-Qura University
– sequence: 6
  givenname: Amil
  surname: Daraz
  fullname: Daraz, Amil
  organization: College of Information Science and Electronic Engineering, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40754610$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAOKxIWLwd-JTwitllKpggucrZfkJXiVtYudVOq_x7sppeWAL7aeZ-Y9e-YlOQkxICGvOXvPmWw-ZMW1bSgTmnIpGkv1M3ImmNJUSCFOHp1PyUXOO1aWFlZx-4KcKlZrZTg7I183KeZM89LusJur7fayyn4MMGXaQsa-wn2cfQxVwi6OwR_PS_ZhrLoY5gR59rdYTQgplOIr8nwoXLy438_Jj8_b75sv9Prb5dXm0zXtlFUzBT6gRAOMa9NqYaCved_1TNRKs8HC0BvkRmkFqpaN1MCglXIwxmrd9KKV5-Rq1e0j7NxN8ntIdy6Cd8dCTKODNPtuQsdBNDUAWNW3SqimLd00V9halEUWitbHVetmaffYd3h41vRE9OlN8D_dGG8dF5Jb1vCi8O5eIcVfC-bZ7X3ucJogYFyyk0IaIYprskDf_gPdxSUd_vuIYsUvbQvqzeORHmb541sBiBXQHexLODxAOHOHfLg1H67kwx3z4XQhyZWUCziMmP72_g_rN9ngvMk
Cites_doi 10.53555/AJBR.v27i6S.5147
10.1016/j.ins.2021.10.005
10.1109/TAFFC.2018.2874986
10.1109/ICSADL65848.2025.10933235
10.1145/3712199
10.1109/TIM.2025.3553234
10.1109/TIM.2020.3006611
10.1109/ACCESS.2019.2936124
10.1007/978-3-030-86993-9_50
10.1007/s42979-023-02423-7
10.1109/TPAMI.2025.3526802
10.1109/RADIOELEK.2019.8733432
10.1007/s11257-024-09424-y
10.1109/TAFFC.2025.3554399
10.1016/j.jksuci.2021.03.009
10.3390/info13060268
10.3390/diagnostics12102508
10.3390/app14209527
10.3390/brainsci15030220
10.1037/emo0000718
10.1109/ACCESS.2019.2944001
10.1007/978-981-97-0855-0_51
10.1007/s11831-023-09920-1
10.3390/s23167092
10.1080/02699938908412709
10.1504/IJAACS.2013.050687
10.1109/BIBM55620.2022.9995634
10.1109/TAFFC.2022.3164516
10.1016/j.neuroimage.2013.11.005
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-13289-5
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_1a287aaa94db4248b6ad514eb9e30aba
PMC12319081
40754610
10_1038_s41598_025_13289_5
Genre Journal Article
GrantInformation_xml – fundername: University of Jeddah
  grantid: UJ-24-SUCH-1247
  funderid: https://doi.org/10.13039/501100015624
– fundername: University of Jeddah
  grantid: UJ-24-SUCH-1247
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AARCD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-a1fe3e6a0156b526ad71dcd027450f9afd6e16454a473835a0ab33f669558d2b3
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:17 EDT 2025
Thu Aug 21 18:31:19 EDT 2025
Fri Sep 05 15:27:45 EDT 2025
Sat Aug 23 13:00:01 EDT 2025
Sat Aug 09 01:32:36 EDT 2025
Thu Aug 14 00:12:25 EDT 2025
Mon Aug 04 01:10:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
CNN
Ensemble learning
Artificial Intelligence
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-a1fe3e6a0156b526ad71dcd027450f9afd6e16454a473835a0ab33f669558d2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-13289-5
PMID 40754610
PQID 3236032259
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_1a287aaa94db4248b6ad514eb9e30aba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12319081
proquest_miscellaneous_3236220383
proquest_journals_3236032259
pubmed_primary_40754610
crossref_primary_10_1038_s41598_025_13289_5
springer_journals_10_1038_s41598_025_13289_5
PublicationCentury 2000
PublicationDate 2025-08-03
PublicationDateYYYYMMDD 2025-08-03
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References AL Cîrneanu (13289_CR17) 2023; 23
H Boughanem (13289_CR21) 2023; 5
X Shen (13289_CR44) 2022; 14
F Noroozi (13289_CR4) 2018; 12
X Deng (13289_CR34) 2024; 1
AR Khan (13289_CR31) 2022; 13
SK Khare (13289_CR13) 2020; 69
FZ Canal (13289_CR19) 2022; 1
13289_CR27
13289_CR26
13289_CR25
L Abramson (13289_CR3) 2021; 21
NA Badrulhisham (13289_CR16) 2021; 1962
EL Hall (13289_CR8) 2014; 15
M Yu (13289_CR29) 2025; 1
D Dadebayev (13289_CR7) 2022; 34
S Rajwal (13289_CR22) 2023; 30
H Uyanık (13289_CR11) 2022; 12
13289_CR10
KS Rao (13289_CR5) 2012
S Liu (13289_CR23) 2023; 8
Q Zhu (13289_CR37) 2025
G Garcia-Molina (13289_CR2) 2013; 6
13289_CR39
JE LeDoux (13289_CR1) 1989; 3
13289_CR15
13289_CR14
Y Wang (13289_CR35) 2025; 35
SM Abdullah (13289_CR18) 2021; 2
R Sujatha (13289_CR38) 2025; 10
E Gkintoni (13289_CR24) 2025; 15
PJ Bota (13289_CR32) 2019; 26
RA Khalil (13289_CR33) 2019; 19
13289_CR6
13289_CR9
Y Xiao (13289_CR28) 2025; 1
F Fu (13289_CR30) 2025; 30
13289_CR46
13289_CR43
M Anjum (13289_CR12) 2024; 14
13289_CR20
13289_CR42
J Fdez (13289_CR45) 2021; 3
13289_CR41
M Hu (13289_CR36) 2025; 1
13289_CR40
References_xml – ident: 13289_CR10
  doi: 10.53555/AJBR.v27i6S.5147
– volume: 1
  start-page: 593
  issue: 582
  year: 2022
  ident: 13289_CR19
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.10.005
– volume: 12
  start-page: 505
  issue: 2
  year: 2018
  ident: 13289_CR4
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2874986
– ident: 13289_CR25
  doi: 10.1109/ICSADL65848.2025.10933235
– ident: 13289_CR14
  doi: 10.1145/3712199
– ident: 13289_CR26
– ident: 13289_CR40
– ident: 13289_CR39
  doi: 10.1109/TIM.2025.3553234
– ident: 13289_CR43
– volume: 69
  start-page: 9609
  issue: 12
  year: 2020
  ident: 13289_CR13
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3006611
– volume: 19
  start-page: 117327
  issue: 7
  year: 2019
  ident: 13289_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936124
– ident: 13289_CR41
– volume: 1
  issue: 104
  year: 2025
  ident: 13289_CR36
  publication-title: Biomed. Signal Process. Control
– volume: 3
  issue: 15
  year: 2021
  ident: 13289_CR45
  publication-title: Front. Neurosci.
– ident: 13289_CR46
  doi: 10.1007/978-3-030-86993-9_50
– volume: 5
  start-page: 96
  issue: 1
  year: 2023
  ident: 13289_CR21
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-023-02423-7
– ident: 13289_CR27
  doi: 10.1109/TPAMI.2025.3526802
– ident: 13289_CR20
  doi: 10.1109/RADIOELEK.2019.8733432
– volume: 35
  start-page: 4
  issue: 1
  year: 2025
  ident: 13289_CR35
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-024-09424-y
– volume: 10
  start-page: 1
  year: 2025
  ident: 13289_CR38
  publication-title: Multimed. Tools Appl.
– year: 2025
  ident: 13289_CR37
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2025.3554399
– volume: 1962
  issue: 1
  year: 2021
  ident: 13289_CR16
  publication-title: J. Phys.: Conf. Ser.
– volume: 34
  start-page: 4385
  issue: 7
  year: 2022
  ident: 13289_CR7
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2021.03.009
– volume: 13
  start-page: 268
  issue: 6
  year: 2022
  ident: 13289_CR31
  publication-title: Information
  doi: 10.3390/info13060268
– volume: 12
  start-page: 2508
  issue: 10
  year: 2022
  ident: 13289_CR11
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12102508
– volume: 14
  start-page: 9527
  issue: 20
  year: 2024
  ident: 13289_CR12
  publication-title: Appl. Sci.
  doi: 10.3390/app14209527
– volume: 8
  issue: 265
  year: 2023
  ident: 13289_CR23
  publication-title: Knowl.-Based Syst.
– volume: 15
  start-page: 220
  issue: 3
  year: 2025
  ident: 13289_CR24
  publication-title: Brain Sci.
  doi: 10.3390/brainsci15030220
– volume: 21
  start-page: 557
  issue: 3
  year: 2021
  ident: 13289_CR3
  publication-title: Emotion
  doi: 10.1037/emo0000718
– volume: 26
  start-page: 140990
  issue: 7
  year: 2019
  ident: 13289_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944001
– volume: 30
  issue: 309
  year: 2025
  ident: 13289_CR30
  publication-title: Knowl.-Based Syst.
– ident: 13289_CR9
  doi: 10.1007/978-981-97-0855-0_51
– volume: 1
  issue: 102
  year: 2025
  ident: 13289_CR28
  publication-title: Biomed. Signal Process. Control
– volume: 2
  start-page: 53
  issue: 1
  year: 2021
  ident: 13289_CR18
  publication-title: J. Soft Comput. Data Min.
– ident: 13289_CR42
– volume: 1
  issue: 97
  year: 2024
  ident: 13289_CR34
  publication-title: Biomed. Signal Process. Control
– ident: 13289_CR6
– volume: 30
  start-page: 3585
  issue: 6
  year: 2023
  ident: 13289_CR22
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-023-09920-1
– volume: 1
  issue: 100
  year: 2025
  ident: 13289_CR29
  publication-title: Biomed. Signal Process. Control
– volume: 23
  start-page: 7092
  issue: 16
  year: 2023
  ident: 13289_CR17
  publication-title: Sensors
  doi: 10.3390/s23167092
– volume: 3
  start-page: 267
  issue: 4
  year: 1989
  ident: 13289_CR1
  publication-title: Cogn. Emot.
  doi: 10.1080/02699938908412709
– volume: 6
  start-page: 9
  issue: 1
  year: 2013
  ident: 13289_CR2
  publication-title: Int. J. Auton. Adapt. Commun. Syst.
  doi: 10.1504/IJAACS.2013.050687
– volume-title: Emotion Recognition Using Speech Features
  year: 2012
  ident: 13289_CR5
– ident: 13289_CR15
  doi: 10.1109/BIBM55620.2022.9995634
– volume: 14
  start-page: 2496
  issue: 3
  year: 2022
  ident: 13289_CR44
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3164516
– volume: 15
  start-page: 80
  issue: 102
  year: 2014
  ident: 13289_CR8
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.005
SSID ssj0000529419
Score 2.4528446
Snippet Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals...
Abstract Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 28295
SubjectTerms 639/166
639/4077
Accuracy
Adult
Algorithms
Artificial Intelligence
Biochips
Brain
Brain - physiology
Brain-Computer Interfaces
CNN
Computer applications
Datasets
Deep learning
EEG
Electroencephalography
Electroencephalography - methods
Emotions
Emotions - physiology
Ensemble learning
Female
Humanities and Social Sciences
Humans
Implants
Literature reviews
Machine Learning
Male
multidisciplinary
Neural networks
Physiology
Science
Science (multidisciplinary)
Signal processing
Signal Processing, Computer-Assisted
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG8CBaUSN7AavxL7CNWWqhI9Uak3y68ULinq7h7498zY2aVLqbhwi2JLGX1je2Yy428A3unYa6kHz7JWiiltEgvdqFlEY89NxjU1Ukb3y1l_cq5OL_TFjVZfVBNW6YErcIfco0_vvbcqBSWUCb1PaORzsFl2PhTXqLPdjWCqsnoLq7idb8l00hwu0VLRbTKhGQZgxjK9Y4kKYf_fvMzbxZJ_ZEyLITp-BA9nD7L9WCV_DPfy9ATu156SP5_C2RF9jS3Xgf6wtIvF55ZqNHCVMbJYqc21cU-7LR3CZ6p-v2xL2bpf0gHYzt0kLp_B-fHi69EJm5smsKisWjHPxyxz7-mKdNAC0Rp4iomiT92N1o-pz5xovLwaMDrVHkGUcux7q1FRIsjnsDddTfkltD7GUQ4qZxMzoh_8EBIXKaJTwtMYVQPvNwC6H5Ubw5WctjSuwu0QblfgdrqBT4TxdibxWpcXqG03a9v9S9sN7G805ObNtnRSyL6jg8k2cLAdxm1CuQ8_5at1nSMESiYbeFEVupUEY1pNtPMNmB1V74i6OzJ9_1aouNHuo0dleAMfNqvit1x3Y_Hqf2DxGh4IWs5UvyL3YW91vc5v0ENahbdlM_wCFs8ONg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJu0BQWJG1hN_EicE4JqS4VET1Tam-VXFi7Zttk98O-ZcbypltctSix5MvPZM-MZzwC8Vb5RQrWWRSUlk0oH5qpeMY_KvtYRMdVTRPfrRXN-Kb8s1TIfuI05rXK3J6aNOqw9nZGfCC6aitDXfbi6ZtQ1iqKruYXGXbiXSpchnttlO5-xUBRL1l2-K1MJfTKivqI7ZVwxdMN0x9SePkpl-_9ma_6ZMvlb3DSpo7NH8DDbkeXHSfCP4U4cnsD9qbPkz6dwcUqzsXHr6JylXCw-l5SpgVhjpLdCGaf2PeWcQITPlAO_KlPyuh1pGyxzT4nVM7g8W3w7PWe5dQLzspMbZus-ithYuijtFG9saOvgA_mgquo724cm1lTMy8oWfVRlK-uE6JumUygu7sRzOBjWQ3wJpfW-F62MUfsog3O2daHmwaNpUofeywLe7RhorqYKGSZFtoU2E7sNstskdhtVwCfi8TySqlunF-ublcmLxdQW_ThrbYfzSS61Q_rRsIuuiwIJtQUc7yRk8pIbzS1ACngzf8bFQhEQO8T1dhrDOVImCngxCXSmBD1bRcXnC9B7ot4jdf_L8ON7KsiN2h_tKl0X8H6Hilu6_s2Lw___xhE84ARUyk8Rx3CwudnGV2gBbdzrBPNfxAgEmA
  priority: 102
  providerName: ProQuest
Title Cross-subject EEG signals-based emotion recognition using contrastive learning
URI https://link.springer.com/article/10.1038/s41598-025-13289-5
https://www.ncbi.nlm.nih.gov/pubmed/40754610
https://www.proquest.com/docview/3236032259
https://www.proquest.com/docview/3236220383
https://pubmed.ncbi.nlm.nih.gov/PMC12319081
https://doaj.org/article/1a287aaa94db4248b6ad514eb9e30aba
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LjtMwcLQPIXFBvAksVZC4gUXiR-Icu1WXVSUqBKzUm2XHTpdLirbtYf9-Z5wHKiwHToliRx7NjD0znhfAe1UXSqjSsqCkZFJpz1zWKFajsM91QJ5qyKP7ZVlcXsnFSq2OgA-5MDFoP5a0jMf0EB32aYuChpLBuGJoP-mKqWM41WjXEVfPitl4r0KeK5lXfX5MJvQ9vx7IoFiq_z798u8wyT98pVEEXTyGR73umE47aJ_AUWifwoOum-TtM1jOaDW23Tu6W0nn888pRWcgfzGSVT4NXcuedAwawneKe1-nMWDdbunoS_s-EuvncHUx_zG7ZH27BFbLSu6YzZsgQmEpOdopXlhf5r72ZHeqrKls44uQUwEvK0u0S5XNrBOiKYpKIYm4Ey_gpN204RWktq4bUcoQdB2kd86Wzufc16iO5L6pZQIfBgSaX11VDBO92UKbDt0G0W0iuo1K4JxwPM6kitbxw-ZmbXoKm9yi7WatrXA9yaV2CD8qc8FVQSCgNoGzgUKm32ZbI7goMjqSqgTejcO4QcjrYduw2XdzOEfIRAIvO4KOkKA1q6jgfAL6gNQHoB6OtD-vYxFulPioS-k8gY8DV_yG69-4eP1_09_AQ06MSzEq4gxOdjf78Ba1oJ2bwHG5KidwOp0uvi_weT5ffv02iZthEm8W7gA4ggeG
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYIEJ7Ca-JHHASFatmxpu0KolXpz7dhZesm2za5Q_xS_kZm8quV16y1KomQ8_uyZ8bwAXqsiUUKlhnklJZMqc8xGpWIFCvs484ipkjy6B9NkciS_HKvjNfjZ58JQWGW_JzYbtZsXdEa-KbhIIkJf_uHsnFHXKPKu9i00Wljs-csfaLLV73c_4fy-4XxnfLg9YV1XAVbIXC6YiUsvfGIoh9gqnhiXxq5wZJ6pqMxN6RIfU50rI1M035SJjBWiTJJc4Ui4FfjdG7AuKaN1BOtb4-nXb8OpDvnNZJx32TmRyDZrlJCUxcYVQ8Mvy5lakYBNo4C_abd_Bmn-5qltBODOXbjTaa7hxxZq92DNV_fhZtvL8vIBTLfpb6xeWjrZCcfjzyHFhiC6GUlKF_q2YVA4hCzhNUXdz8ImXN7UtPGGXReL2UM4uha2PoJRNa_8EwhNUZQild5nhZfOWpNaF3NXoDIUu7KQAbztGajP2pocuvGli0y37NbIbt2wW6sAtojHw5tUT7u5Mb-Y6W556tig5WiMyfF_ksvMIv2oSnqbe4GEmgA2-hnS3SKv9RUkA3g1PMblST4XU_n5sn2Hc6RMBPC4ndCBErSlFZW7DyBbmeoVUlefVKffmxLgqG-gJpfFAbzrUXFF17958fT_w3gJtyaHB_t6f3e69wxucwItRceIDRgtLpb-OepfC_uiA30IJ9e9zn4BvYhCPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKViAuiDeBAkGCE4w2mUceB4Rou0tLYVUhKvU2zGQm216ypdkV6l_j12HnVS2vW29REiUez-exPfbYAC9VkSihUsO8kpJJlTlmo1KxApV9nHnEVEkR3c-zZO9IfjxWxxvwsz8LQ2mV_ZrYLNRuUdAe-VhwkUSEvnxcdmkRh7vTd2ffGXWQokhr306jhciBv_iB7lv9dn8X5_oV59PJ15091nUYYIXM5ZKZuPTCJ4bOE1vFE-PS2BWOXDUVlbkpXeJjqnllZIqunDKRsUKUSZIrHBW3Ar97DTZT1IpyBJvbk9nhl2GHh2JoMs67kzqRyMY1aks60cYVQycwy5la04ZN04C_Wbp_Jmz-FrVtlOH0NtzqrNjwfQu7O7Dhq7twve1reXEPZjv0N1avLO3yhJPJh5DyRBDpjLSmC33bPCgc0pfwmjLw52GTOm9qWoTDrqPF_D4cXQlbH8CoWlT-EYSmKEqRSu-zwktnrUmti7kr0DCKXVnIAF73DNRnbX0O3cTVRaZbdmtkt27YrVUA28Tj4U2qrd3cWJzPdSeqOjboRRpjcvyf5DKzSD-ald7mXiChJoCtfoZ0J_C1voRnAC-GxyiqFH8xlV-s2nc4R8pEAA_bCR0oQb9aUen7ALK1qV4jdf1JdXrSlANH2wOtuiwO4E2Piku6_s2Lx_8fxnO4gfKlP-3PDp7ATU6YpUQZsQWj5fnKP0VTbGmfdZgP4dtVi9kvkzVGaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+EEG+signals-based+emotion+recognition+using+contrastive+learning&rft.jtitle=Scientific+reports&rft.au=Alghamdi%2C+Ahmed+Mohammed&rft.au=Ashraf%2C+M.+Usman&rft.au=Bahaddad%2C+Adel+A.&rft.au=Almarhabi%2C+Khalid+Ali&rft.date=2025-08-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-13289-5&rft_id=info%3Apmid%2F40754610&rft.externalDocID=PMC12319081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon