Cross-subject EEG signals-based emotion recognition using contrastive learning
Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual diffe...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 28295 - 17 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.08.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-025-13289-5 |
Cover
Abstract | Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system. |
---|---|
AbstractList | Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system. Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system. Abstract Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system. |
ArticleNumber | 28295 |
Author | Al Shehri, Waleed A. Ashraf, M. Usman Alghamdi, Ahmed Mohammed Almarhabi, Khalid Ali Bahaddad, Adel A. Daraz, Amil |
Author_xml | – sequence: 1 givenname: Ahmed Mohammed surname: Alghamdi fullname: Alghamdi, Ahmed Mohammed email: amalghamdi@uj.edu.sa organization: Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah – sequence: 2 givenname: M. Usman surname: Ashraf fullname: Ashraf, M. Usman organization: Department of Computer Science, GC Women University Sialkot – sequence: 3 givenname: Adel A. surname: Bahaddad fullname: Bahaddad, Adel A. organization: Department of Information System, Faculty of Computing and Information Technology, King Abdulaziz University – sequence: 4 givenname: Khalid Ali surname: Almarhabi fullname: Almarhabi, Khalid Ali organization: Department of Computer Science, College of Engineering and Computing in Al-Qunfudah, Umm Al-Qura University – sequence: 5 givenname: Waleed A. surname: Al Shehri fullname: Al Shehri, Waleed A. organization: Department of Computing, College of Engineering and Computing in Al-Lith, Umm Al-Qura University – sequence: 6 givenname: Amil surname: Daraz fullname: Daraz, Amil organization: College of Information Science and Electronic Engineering, Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40754610$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFARLaV_gAOKxIWLwd-JTwitllKpggucrZfkJXiVtYudVOq_x7sppeWAL7aeZ-Y9e-YlOQkxICGvOXvPmWw-ZMW1bSgTmnIpGkv1M3ImmNJUSCFOHp1PyUXOO1aWFlZx-4KcKlZrZTg7I183KeZM89LusJur7fayyn4MMGXaQsa-wn2cfQxVwi6OwR_PS_ZhrLoY5gR59rdYTQgplOIr8nwoXLy438_Jj8_b75sv9Prb5dXm0zXtlFUzBT6gRAOMa9NqYaCved_1TNRKs8HC0BvkRmkFqpaN1MCglXIwxmrd9KKV5-Rq1e0j7NxN8ntIdy6Cd8dCTKODNPtuQsdBNDUAWNW3SqimLd00V9halEUWitbHVetmaffYd3h41vRE9OlN8D_dGG8dF5Jb1vCi8O5eIcVfC-bZ7X3ucJogYFyyk0IaIYprskDf_gPdxSUd_vuIYsUvbQvqzeORHmb541sBiBXQHexLODxAOHOHfLg1H67kwx3z4XQhyZWUCziMmP72_g_rN9ngvMk |
Cites_doi | 10.53555/AJBR.v27i6S.5147 10.1016/j.ins.2021.10.005 10.1109/TAFFC.2018.2874986 10.1109/ICSADL65848.2025.10933235 10.1145/3712199 10.1109/TIM.2025.3553234 10.1109/TIM.2020.3006611 10.1109/ACCESS.2019.2936124 10.1007/978-3-030-86993-9_50 10.1007/s42979-023-02423-7 10.1109/TPAMI.2025.3526802 10.1109/RADIOELEK.2019.8733432 10.1007/s11257-024-09424-y 10.1109/TAFFC.2025.3554399 10.1016/j.jksuci.2021.03.009 10.3390/info13060268 10.3390/diagnostics12102508 10.3390/app14209527 10.3390/brainsci15030220 10.1037/emo0000718 10.1109/ACCESS.2019.2944001 10.1007/978-981-97-0855-0_51 10.1007/s11831-023-09920-1 10.3390/s23167092 10.1080/02699938908412709 10.1504/IJAACS.2013.050687 10.1109/BIBM55620.2022.9995634 10.1109/TAFFC.2022.3164516 10.1016/j.neuroimage.2013.11.005 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-13289-5 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_1a287aaa94db4248b6ad514eb9e30aba PMC12319081 40754610 10_1038_s41598_025_13289_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: University of Jeddah grantid: UJ-24-SUCH-1247 funderid: https://doi.org/10.13039/501100015624 – fundername: University of Jeddah grantid: UJ-24-SUCH-1247 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AARCD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c494t-a1fe3e6a0156b526ad71dcd027450f9afd6e16454a473835a0ab33f669558d2b3 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:17 EDT 2025 Thu Aug 21 18:31:19 EDT 2025 Fri Sep 05 15:27:45 EDT 2025 Sat Aug 23 13:00:01 EDT 2025 Sat Aug 09 01:32:36 EDT 2025 Thu Aug 14 00:12:25 EDT 2025 Mon Aug 04 01:10:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning CNN Ensemble learning Artificial Intelligence |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-a1fe3e6a0156b526ad71dcd027450f9afd6e16454a473835a0ab33f669558d2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-13289-5 |
PMID | 40754610 |
PQID | 3236032259 |
PQPubID | 2041939 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a287aaa94db4248b6ad514eb9e30aba pubmedcentral_primary_oai_pubmedcentral_nih_gov_12319081 proquest_miscellaneous_3236220383 proquest_journals_3236032259 pubmed_primary_40754610 crossref_primary_10_1038_s41598_025_13289_5 springer_journals_10_1038_s41598_025_13289_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-03 |
PublicationDateYYYYMMDD | 2025-08-03 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | AL Cîrneanu (13289_CR17) 2023; 23 H Boughanem (13289_CR21) 2023; 5 X Shen (13289_CR44) 2022; 14 F Noroozi (13289_CR4) 2018; 12 X Deng (13289_CR34) 2024; 1 AR Khan (13289_CR31) 2022; 13 SK Khare (13289_CR13) 2020; 69 FZ Canal (13289_CR19) 2022; 1 13289_CR27 13289_CR26 13289_CR25 L Abramson (13289_CR3) 2021; 21 NA Badrulhisham (13289_CR16) 2021; 1962 EL Hall (13289_CR8) 2014; 15 M Yu (13289_CR29) 2025; 1 D Dadebayev (13289_CR7) 2022; 34 S Rajwal (13289_CR22) 2023; 30 H Uyanık (13289_CR11) 2022; 12 13289_CR10 KS Rao (13289_CR5) 2012 S Liu (13289_CR23) 2023; 8 Q Zhu (13289_CR37) 2025 G Garcia-Molina (13289_CR2) 2013; 6 13289_CR39 JE LeDoux (13289_CR1) 1989; 3 13289_CR15 13289_CR14 Y Wang (13289_CR35) 2025; 35 SM Abdullah (13289_CR18) 2021; 2 R Sujatha (13289_CR38) 2025; 10 E Gkintoni (13289_CR24) 2025; 15 PJ Bota (13289_CR32) 2019; 26 RA Khalil (13289_CR33) 2019; 19 13289_CR6 13289_CR9 Y Xiao (13289_CR28) 2025; 1 F Fu (13289_CR30) 2025; 30 13289_CR46 13289_CR43 M Anjum (13289_CR12) 2024; 14 13289_CR20 13289_CR42 J Fdez (13289_CR45) 2021; 3 13289_CR41 M Hu (13289_CR36) 2025; 1 13289_CR40 |
References_xml | – ident: 13289_CR10 doi: 10.53555/AJBR.v27i6S.5147 – volume: 1 start-page: 593 issue: 582 year: 2022 ident: 13289_CR19 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.10.005 – volume: 12 start-page: 505 issue: 2 year: 2018 ident: 13289_CR4 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2874986 – ident: 13289_CR25 doi: 10.1109/ICSADL65848.2025.10933235 – ident: 13289_CR14 doi: 10.1145/3712199 – ident: 13289_CR26 – ident: 13289_CR40 – ident: 13289_CR39 doi: 10.1109/TIM.2025.3553234 – ident: 13289_CR43 – volume: 69 start-page: 9609 issue: 12 year: 2020 ident: 13289_CR13 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3006611 – volume: 19 start-page: 117327 issue: 7 year: 2019 ident: 13289_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936124 – ident: 13289_CR41 – volume: 1 issue: 104 year: 2025 ident: 13289_CR36 publication-title: Biomed. Signal Process. Control – volume: 3 issue: 15 year: 2021 ident: 13289_CR45 publication-title: Front. Neurosci. – ident: 13289_CR46 doi: 10.1007/978-3-030-86993-9_50 – volume: 5 start-page: 96 issue: 1 year: 2023 ident: 13289_CR21 publication-title: SN Comput. Sci. doi: 10.1007/s42979-023-02423-7 – ident: 13289_CR27 doi: 10.1109/TPAMI.2025.3526802 – ident: 13289_CR20 doi: 10.1109/RADIOELEK.2019.8733432 – volume: 35 start-page: 4 issue: 1 year: 2025 ident: 13289_CR35 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-024-09424-y – volume: 10 start-page: 1 year: 2025 ident: 13289_CR38 publication-title: Multimed. Tools Appl. – year: 2025 ident: 13289_CR37 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2025.3554399 – volume: 1962 issue: 1 year: 2021 ident: 13289_CR16 publication-title: J. Phys.: Conf. Ser. – volume: 34 start-page: 4385 issue: 7 year: 2022 ident: 13289_CR7 publication-title: J. King Saud Univ.-Comput. Inf. Sci. doi: 10.1016/j.jksuci.2021.03.009 – volume: 13 start-page: 268 issue: 6 year: 2022 ident: 13289_CR31 publication-title: Information doi: 10.3390/info13060268 – volume: 12 start-page: 2508 issue: 10 year: 2022 ident: 13289_CR11 publication-title: Diagnostics doi: 10.3390/diagnostics12102508 – volume: 14 start-page: 9527 issue: 20 year: 2024 ident: 13289_CR12 publication-title: Appl. Sci. doi: 10.3390/app14209527 – volume: 8 issue: 265 year: 2023 ident: 13289_CR23 publication-title: Knowl.-Based Syst. – volume: 15 start-page: 220 issue: 3 year: 2025 ident: 13289_CR24 publication-title: Brain Sci. doi: 10.3390/brainsci15030220 – volume: 21 start-page: 557 issue: 3 year: 2021 ident: 13289_CR3 publication-title: Emotion doi: 10.1037/emo0000718 – volume: 26 start-page: 140990 issue: 7 year: 2019 ident: 13289_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944001 – volume: 30 issue: 309 year: 2025 ident: 13289_CR30 publication-title: Knowl.-Based Syst. – ident: 13289_CR9 doi: 10.1007/978-981-97-0855-0_51 – volume: 1 issue: 102 year: 2025 ident: 13289_CR28 publication-title: Biomed. Signal Process. Control – volume: 2 start-page: 53 issue: 1 year: 2021 ident: 13289_CR18 publication-title: J. Soft Comput. Data Min. – ident: 13289_CR42 – volume: 1 issue: 97 year: 2024 ident: 13289_CR34 publication-title: Biomed. Signal Process. Control – ident: 13289_CR6 – volume: 30 start-page: 3585 issue: 6 year: 2023 ident: 13289_CR22 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-023-09920-1 – volume: 1 issue: 100 year: 2025 ident: 13289_CR29 publication-title: Biomed. Signal Process. Control – volume: 23 start-page: 7092 issue: 16 year: 2023 ident: 13289_CR17 publication-title: Sensors doi: 10.3390/s23167092 – volume: 3 start-page: 267 issue: 4 year: 1989 ident: 13289_CR1 publication-title: Cogn. Emot. doi: 10.1080/02699938908412709 – volume: 6 start-page: 9 issue: 1 year: 2013 ident: 13289_CR2 publication-title: Int. J. Auton. Adapt. Commun. Syst. doi: 10.1504/IJAACS.2013.050687 – volume-title: Emotion Recognition Using Speech Features year: 2012 ident: 13289_CR5 – ident: 13289_CR15 doi: 10.1109/BIBM55620.2022.9995634 – volume: 14 start-page: 2496 issue: 3 year: 2022 ident: 13289_CR44 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3164516 – volume: 15 start-page: 80 issue: 102 year: 2014 ident: 13289_CR8 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.005 |
SSID | ssj0000529419 |
Score | 2.4528446 |
Snippet | Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals... Abstract Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 28295 |
SubjectTerms | 639/166 639/4077 Accuracy Adult Algorithms Artificial Intelligence Biochips Brain Brain - physiology Brain-Computer Interfaces CNN Computer applications Datasets Deep learning EEG Electroencephalography Electroencephalography - methods Emotions Emotions - physiology Ensemble learning Female Humanities and Social Sciences Humans Implants Literature reviews Machine Learning Male multidisciplinary Neural networks Physiology Science Science (multidisciplinary) Signal processing Signal Processing, Computer-Assisted Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG8CBaUSN7AavxL7CNWWqhI9Uak3y68ULinq7h7498zY2aVLqbhwi2JLGX1je2Yy428A3unYa6kHz7JWiiltEgvdqFlEY89NxjU1Ukb3y1l_cq5OL_TFjVZfVBNW6YErcIfco0_vvbcqBSWUCb1PaORzsFl2PhTXqLPdjWCqsnoLq7idb8l00hwu0VLRbTKhGQZgxjK9Y4kKYf_fvMzbxZJ_ZEyLITp-BA9nD7L9WCV_DPfy9ATu156SP5_C2RF9jS3Xgf6wtIvF55ZqNHCVMbJYqc21cU-7LR3CZ6p-v2xL2bpf0gHYzt0kLp_B-fHi69EJm5smsKisWjHPxyxz7-mKdNAC0Rp4iomiT92N1o-pz5xovLwaMDrVHkGUcux7q1FRIsjnsDddTfkltD7GUQ4qZxMzoh_8EBIXKaJTwtMYVQPvNwC6H5Ubw5WctjSuwu0QblfgdrqBT4TxdibxWpcXqG03a9v9S9sN7G805ObNtnRSyL6jg8k2cLAdxm1CuQ8_5at1nSMESiYbeFEVupUEY1pNtPMNmB1V74i6OzJ9_1aouNHuo0dleAMfNqvit1x3Y_Hqf2DxGh4IWs5UvyL3YW91vc5v0ENahbdlM_wCFs8ONg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJu0BQWJG1hN_EicE4JqS4VET1Tam-VXFi7Zttk98O-ZcbypltctSix5MvPZM-MZzwC8Vb5RQrWWRSUlk0oH5qpeMY_KvtYRMdVTRPfrRXN-Kb8s1TIfuI05rXK3J6aNOqw9nZGfCC6aitDXfbi6ZtQ1iqKruYXGXbiXSpchnttlO5-xUBRL1l2-K1MJfTKivqI7ZVwxdMN0x9SePkpl-_9ma_6ZMvlb3DSpo7NH8DDbkeXHSfCP4U4cnsD9qbPkz6dwcUqzsXHr6JylXCw-l5SpgVhjpLdCGaf2PeWcQITPlAO_KlPyuh1pGyxzT4nVM7g8W3w7PWe5dQLzspMbZus-ithYuijtFG9saOvgA_mgquo724cm1lTMy8oWfVRlK-uE6JumUygu7sRzOBjWQ3wJpfW-F62MUfsog3O2daHmwaNpUofeywLe7RhorqYKGSZFtoU2E7sNstskdhtVwCfi8TySqlunF-ublcmLxdQW_ThrbYfzSS61Q_rRsIuuiwIJtQUc7yRk8pIbzS1ACngzf8bFQhEQO8T1dhrDOVImCngxCXSmBD1bRcXnC9B7ot4jdf_L8ON7KsiN2h_tKl0X8H6Hilu6_s2Lw___xhE84ARUyk8Rx3CwudnGV2gBbdzrBPNfxAgEmA priority: 102 providerName: ProQuest |
Title | Cross-subject EEG signals-based emotion recognition using contrastive learning |
URI | https://link.springer.com/article/10.1038/s41598-025-13289-5 https://www.ncbi.nlm.nih.gov/pubmed/40754610 https://www.proquest.com/docview/3236032259 https://www.proquest.com/docview/3236220383 https://pubmed.ncbi.nlm.nih.gov/PMC12319081 https://doaj.org/article/1a287aaa94db4248b6ad514eb9e30aba |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LjtMwcLQPIXFBvAksVZC4gUXiR-Icu1WXVSUqBKzUm2XHTpdLirbtYf9-Z5wHKiwHToliRx7NjD0znhfAe1UXSqjSsqCkZFJpz1zWKFajsM91QJ5qyKP7ZVlcXsnFSq2OgA-5MDFoP5a0jMf0EB32aYuChpLBuGJoP-mKqWM41WjXEVfPitl4r0KeK5lXfX5MJvQ9vx7IoFiq_z798u8wyT98pVEEXTyGR73umE47aJ_AUWifwoOum-TtM1jOaDW23Tu6W0nn888pRWcgfzGSVT4NXcuedAwawneKe1-nMWDdbunoS_s-EuvncHUx_zG7ZH27BFbLSu6YzZsgQmEpOdopXlhf5r72ZHeqrKls44uQUwEvK0u0S5XNrBOiKYpKIYm4Ey_gpN204RWktq4bUcoQdB2kd86Wzufc16iO5L6pZQIfBgSaX11VDBO92UKbDt0G0W0iuo1K4JxwPM6kitbxw-ZmbXoKm9yi7WatrXA9yaV2CD8qc8FVQSCgNoGzgUKm32ZbI7goMjqSqgTejcO4QcjrYduw2XdzOEfIRAIvO4KOkKA1q6jgfAL6gNQHoB6OtD-vYxFulPioS-k8gY8DV_yG69-4eP1_09_AQ06MSzEq4gxOdjf78Ba1oJ2bwHG5KidwOp0uvi_weT5ffv02iZthEm8W7gA4ggeG |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYIEJ7Ca-JHHASFatmxpu0KolXpz7dhZesm2za5Q_xS_kZm8quV16y1KomQ8_uyZ8bwAXqsiUUKlhnklJZMqc8xGpWIFCvs484ipkjy6B9NkciS_HKvjNfjZ58JQWGW_JzYbtZsXdEa-KbhIIkJf_uHsnFHXKPKu9i00Wljs-csfaLLV73c_4fy-4XxnfLg9YV1XAVbIXC6YiUsvfGIoh9gqnhiXxq5wZJ6pqMxN6RIfU50rI1M035SJjBWiTJJc4Ui4FfjdG7AuKaN1BOtb4-nXb8OpDvnNZJx32TmRyDZrlJCUxcYVQ8Mvy5lakYBNo4C_abd_Bmn-5qltBODOXbjTaa7hxxZq92DNV_fhZtvL8vIBTLfpb6xeWjrZCcfjzyHFhiC6GUlKF_q2YVA4hCzhNUXdz8ImXN7UtPGGXReL2UM4uha2PoJRNa_8EwhNUZQild5nhZfOWpNaF3NXoDIUu7KQAbztGajP2pocuvGli0y37NbIbt2wW6sAtojHw5tUT7u5Mb-Y6W556tig5WiMyfF_ksvMIv2oSnqbe4GEmgA2-hnS3SKv9RUkA3g1PMblST4XU_n5sn2Hc6RMBPC4ndCBErSlFZW7DyBbmeoVUlefVKffmxLgqG-gJpfFAbzrUXFF17958fT_w3gJtyaHB_t6f3e69wxucwItRceIDRgtLpb-OepfC_uiA30IJ9e9zn4BvYhCPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKViAuiDeBAkGCE4w2mUceB4Rou0tLYVUhKvU2zGQm216ypdkV6l_j12HnVS2vW29REiUez-exPfbYAC9VkSihUsO8kpJJlTlmo1KxApV9nHnEVEkR3c-zZO9IfjxWxxvwsz8LQ2mV_ZrYLNRuUdAe-VhwkUSEvnxcdmkRh7vTd2ffGXWQokhr306jhciBv_iB7lv9dn8X5_oV59PJ15091nUYYIXM5ZKZuPTCJ4bOE1vFE-PS2BWOXDUVlbkpXeJjqnllZIqunDKRsUKUSZIrHBW3Ar97DTZT1IpyBJvbk9nhl2GHh2JoMs67kzqRyMY1aks60cYVQycwy5la04ZN04C_Wbp_Jmz-FrVtlOH0NtzqrNjwfQu7O7Dhq7twve1reXEPZjv0N1avLO3yhJPJh5DyRBDpjLSmC33bPCgc0pfwmjLw52GTOm9qWoTDrqPF_D4cXQlbH8CoWlT-EYSmKEqRSu-zwktnrUmti7kr0DCKXVnIAF73DNRnbX0O3cTVRaZbdmtkt27YrVUA28Tj4U2qrd3cWJzPdSeqOjboRRpjcvyf5DKzSD-ald7mXiChJoCtfoZ0J_C1voRnAC-GxyiqFH8xlV-s2nc4R8pEAA_bCR0oQb9aUen7ALK1qV4jdf1JdXrSlANH2wOtuiwO4E2Piku6_s2Lx_8fxnO4gfKlP-3PDp7ATU6YpUQZsQWj5fnKP0VTbGmfdZgP4dtVi9kvkzVGaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+EEG+signals-based+emotion+recognition+using+contrastive+learning&rft.jtitle=Scientific+reports&rft.au=Alghamdi%2C+Ahmed+Mohammed&rft.au=Ashraf%2C+M.+Usman&rft.au=Bahaddad%2C+Adel+A.&rft.au=Almarhabi%2C+Khalid+Ali&rft.date=2025-08-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-13289-5&rft_id=info%3Apmid%2F40754610&rft.externalDocID=PMC12319081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |