Cross-subject EEG signals-based emotion recognition using contrastive learning

Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual diffe...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 28295 - 17
Main Authors Alghamdi, Ahmed Mohammed, Ashraf, M. Usman, Bahaddad, Adel A., Almarhabi, Khalid Ali, Al Shehri, Waleed A., Daraz, Amil
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-13289-5

Cover

More Information
Summary:Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-13289-5