In situ IR spectroscopy data and effect of the operational parameters on the photocatalytic activity of N-doped TiO2

The TiO2 photocatalyst doped with nitrogen was synthesized via a precipitation method and investigated in the oxidation of acetone vapor under UV (371 nm) and visible light (450 nm). The data were collected in a continuous-flow set-up equipped with a long-path IR gas cell for in situ analysis of oxi...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 24; p. 103917
Main Authors Kovalevskiy, N.S., Selishcheva, S.A., Solovyeva, M.I., Selishchev, D.S.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.06.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The TiO2 photocatalyst doped with nitrogen was synthesized via a precipitation method and investigated in the oxidation of acetone vapor under UV (371 nm) and visible light (450 nm). The data were collected in a continuous-flow set-up equipped with a long-path IR gas cell for in situ analysis of oxidation products and evaluation of the photocatalytic activity. The IR spectra for inlet and outlet reaction mixtures and their change during the process are presented. A technique for quantitative analysis of initial substrate and oxidation product using collected IR spectra is described. The effects of main operational parameters, namely, outlet concentration of oxidizing substrate in the range of 0–25 μmol/L, humidity in the range of 10–85%, and surface density of photocatalyst in the range of 0.6–5.7 mg/cm2 were investigated, and the data received are presented. The data show the influence of these parameters on the UV and visible light photocatalytic activity of N-doped TiO2. The data is publicly available on GitHub according to the link: https://github.com/1kovalevskiy/Effect-of-the-operational-parameters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2019.103917