Machine learning assisted adjustment boosts efficiency of exact inference in randomized controlled trials

In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum’s framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model wi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 24454 - 9
Main Authors Yu, Han, Hutson, Alan, Ma, Xiaoyi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum’s framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.
AbstractList In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum’s framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.
Abstract In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum’s framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.
In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.
ArticleNumber 24454
Author Yu, Han
Ma, Xiaoyi
Hutson, Alan
Author_xml – sequence: 1
  givenname: Han
  surname: Yu
  fullname: Yu, Han
  email: han.yu@roswellpark.org
  organization: Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center
– sequence: 2
  givenname: Alan
  surname: Hutson
  fullname: Hutson, Alan
  organization: Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center
– sequence: 3
  givenname: Xiaoyi
  surname: Ma
  fullname: Ma, Xiaoyi
  organization: Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40629057$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MJM4qabUT4HWBnTVG1S40bXhIE7r7zMQAVeY_314ptaWxeyuSeXcw43l_McHcQUAaGXBL8hmKm3hROhVY-p6AkWw9CTJ-iIYi56yig9eIAP0UkpW9yOoJoT_QwdcjxQjYU8QuGzdVchQjeDzTHETWdLCaWC76zf7kpdINZuTKnU0sE0BRcgutsuTR38sK52IU6QWwsa6rKNPi3hZ1O7FGtO89xgzcHO5QV6OrUCJ3f1GH37cP717FN_-eXjxdn7y95xzWuvYdIcOzeOkoB0Gjs5eeoFAwuTZ0RSAaCpHKQDPjrLAbiUQgg-CmKxY8foYvX1yW7NdQ6Lzbcm2WD2jZQ3xuYa3AxGYYUHzSQTauAegxqV0A07C55SPjavd6vX9W5cwLu2i2znR6aPb2K4Mpt0YwilTImBNYfTO4ecvu-gVLOE4mCebYS0K6b9jxKUS8Ib9fU_1G3a5dh2tWcRzQahGuvVw5HuZ_nzpY1AV4LLqZQM0z2FYPM7OmaNjmnRMfvoGNJEbBWVRo4byH_f_o_qFz7Zx3Y
Cites_doi 10.1177/17407745241251568
10.1073/pnas.1614732113
10.1111/j.2517-6161.1996.tb02080.x
10.1080/01621459.2022.2049278
10.1111/j.1467-9868.2005.00503.x
10.7249/WRA1004-1
10.1111/rssa.12915
10.1214/ss/1177012031
10.1080/01621459.1972.10481279
10.1007/978-0-387-84858-7
10.3389/fimmu.2023.1248867
10.1080/00401706.1970.10488634
10.1037/h0037350
10.1214/ss/1042727942
10.1371/journal.pone.0222768
10.1023/A:1010933404324
10.1145/2939672.2939785
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-10566-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_8080693735864d0e8b859586caed224b
PMC12238563
40629057
10_1038_s41598_025_10566_1
Genre Journal Article
GrantInformation_xml – fundername: National Cancer Institute
  grantid: P30CA016056; P30CA016056; P30CA016056
– fundername: NCI NIH HHS
  grantid: P30CA016056
– fundername: NCI NIH HHS
  grantid: P30 CA016056
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-9ef940ccbb71e7c90c7fd2d53eaefd31725ee92767ce4bca4ee4775554b51a0c3
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:18 EDT 2025
Thu Aug 21 18:23:31 EDT 2025
Thu Jul 10 07:34:34 EDT 2025
Sat Aug 23 13:29:25 EDT 2025
Mon Jul 21 06:04:06 EDT 2025
Wed Jul 16 16:44:04 EDT 2025
Thu Jul 10 06:04:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-9ef940ccbb71e7c90c7fd2d53eaefd31725ee92767ce4bca4ee4775554b51a0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-10566-1
PMID 40629057
PQID 3228193658
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_8080693735864d0e8b859586caed224b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12238563
proquest_miscellaneous_3228524714
proquest_journals_3228193658
pubmed_primary_40629057
crossref_primary_10_1038_s41598_025_10566_1
springer_journals_10_1038_s41598_025_10566_1
PublicationCentury 2000
PublicationDate 2025-07-08
PublicationDateYYYYMMDD 2025-07-08
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References T Ye (10566_CR2) 2023; 118
Leo Breiman (10566_CR10) 2001; 45
Y LeCun (10566_CR12) 2015; 521
10566_CR8
N Schaft (10566_CR1) 2023; 14
S Wager (10566_CR13) 2016; 113
10566_CR14
10566_CR11
H Zou (10566_CR9) 2005; 67
10566_CR16
DB Rubin (10566_CR17) 1974; 66
HM Francis (10566_CR19) 2019; 14
PR Rosenbaum (10566_CR5) 2002; 17
AE Hoerl (10566_CR6) 1970; 12
N Williams (10566_CR15) 2022; 185
10566_CR4
R Tibshirani (10566_CR7) 1996; 58
DF Bauer (10566_CR18) 1972; 67
10566_CR3
References_xml – ident: 10566_CR3
  doi: 10.1177/17407745241251568
– volume: 113
  start-page: 12673
  issue: 45
  year: 2016
  ident: 10566_CR13
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1614732113
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10566_CR7
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 118
  start-page: 2370
  issue: 544
  year: 2023
  ident: 10566_CR2
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2022.2049278
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10566_CR9
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 10566_CR14
  doi: 10.7249/WRA1004-1
– volume: 185
  start-page: 2156
  issue: 4
  year: 2022
  ident: 10566_CR15
  publication-title: Journal of the Royal Statistical Society Series A: Statistics in Society
  doi: 10.1111/rssa.12915
– ident: 10566_CR16
  doi: 10.1214/ss/1177012031
– volume: 67
  start-page: 687
  issue: 339
  year: 1972
  ident: 10566_CR18
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1972.10481279
– ident: 10566_CR11
  doi: 10.1007/978-0-387-84858-7
– volume: 14
  start-page: 1248867
  year: 2023
  ident: 10566_CR1
  publication-title: Frontiers in Immunology
  doi: 10.3389/fimmu.2023.1248867
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: 10566_CR6
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 66
  start-page: 688
  issue: 5
  year: 1974
  ident: 10566_CR17
  publication-title: Journal of educational Psychology
  doi: 10.1037/h0037350
– volume: 17
  start-page: 286
  issue: 3
  year: 2002
  ident: 10566_CR5
  publication-title: Statistical Science
  doi: 10.1214/ss/1042727942
– volume: 14
  issue: 10
  year: 2019
  ident: 10566_CR19
  publication-title: PloS one
  doi: 10.1371/journal.pone.0222768
– ident: 10566_CR4
– volume: 45
  start-page: 5
  year: 2001
  ident: 10566_CR10
  publication-title: Random forests. Machine learning
  doi: 10.1023/A:1010933404324
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10566_CR12
  publication-title: Deep learning. nature
– ident: 10566_CR8
  doi: 10.1145/2939672.2939785
SSID ssj0000529419
Score 2.4519873
Snippet In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed...
Abstract In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 24454
SubjectTerms 639/705/531
692/308/2779/777
Algorithms
Clinical trials
Computer Simulation
Efficiency
Humanities and Social Sciences
Humans
Hypotheses
Hypothesis testing
Learning algorithms
Machine Learning
Mann-Whitney U test
multidisciplinary
Randomized Controlled Trials as Topic - methods
Science
Science (multidisciplinary)
Statistical power
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5kQfBFvFtdJYJvWrbNpU0eVVwWYX1yYd9CLlM9oj2L7QH11ztJeo57vOCLb6VJYZiZZL40M98APNU4cBcEHUtEF2sZOdYu6q7mQZjBOSeFTNXIp2-7kzP55lydX2r1lXLCCj1wUdxR4j3sKIYKpTsZG9Q-MXLpLjiMFH582n0p5l06TBVWb25ka5YqmUboo4kiVaom44l4kzBM3e5FokzY_yeU-Xuy5C83pjkQHd-A6wuCZC-K5DfhCo634GrpKfntNqxOc3oksqUfxHtG8DjZMjIXP26mnFXOCFtP88QwE0ik6ku2Hhh-dWFmq20JID0ximRx_Xn1nb5ekto_0WNu9THdgbPj1-9endRLP4U6SCPn2uBgZBOC932LfTBN6IfIoxLocIgEJLhCNLzv-oDSBycRZd8rAhxeta4J4i4cjOsR7wND51Fp7QbpPR1gGk8GD3Q66pveJXqeCp5tdWsvCm2GzdfdQttiCUuWsNkStq3gZVL_bmaivM4vyBHs4gj2X45QweHWeHZZh5Ol7YogjyCYVcGT3TCtoHQt4kZcb8ocxSlIywruFVvvJCG4ww1B2gr0nhfsibo_Mq4-ZJbuloCXVp2o4PnWYX7K9XddPPgfungI13jy9PQbWh_Cwfxlg48IPM3-cV4nPwDMmRaE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66Ivgi3u26SgTftGybS5M-iYrLIqxPLpy3kMt0PaLtuu0B11_vJE3Pcry9lSaFNDPJfMnMfEPICw0ds57jsYQ3oRSBQWmDbkrmedtZawUXMRv55GNzfCo-rOQqX7iNOaxy2RPTRh0GH-_ID1Hx0HhxNJivz7-XsWpU9K7mEhrXyY1IXRa1Wq3U9o4lerFE3eZcmYrrwxHtVcwpY5F-E5FMWe_Yo0Tb_zes-WfI5G9-02SOju6Q2xlH0jez4O-Sa9DfIzfnypKX98n6JAVJAs1VIc4oguQo0UBt-LIZU2w5RYQ9TiOFRCMRczDp0FH4Yf1E10siID5RtGdh-Lb-iV_n0Pav-JgKfowPyOnR-0_vjstcVaH0ohVT2ULXisp751QNyreVV11gQXKw0AWEE0wCtEw1yoNw3goAoZRE2OFkbSvPH5K9fujhMaFgHUitbSecw2NM5VDsHs9IqlI2kvQU5OUyt-Z8Js8wyenNtZklYVASJknC1AV5G6d_2zMSX6cXw8WZyevIRBrMBiEVl7oRoQLtIkGbbryFgGjEFeRgEZ7Jq3E0V7pTkOfbZlxH0Tliexg2cx_J0FSLgjyaZb0dCYIe1iKwLYje0YKdoe629OvPiau7RvilZcML8mpRmKtx_Xsu9v__G0_ILRZ1OF4z6wOyN11s4CmCo8k9SyvgF5h3D1I
  priority: 102
  providerName: ProQuest
Title Machine learning assisted adjustment boosts efficiency of exact inference in randomized controlled trials
URI https://link.springer.com/article/10.1038/s41598-025-10566-1
https://www.ncbi.nlm.nih.gov/pubmed/40629057
https://www.proquest.com/docview/3228193658
https://www.proquest.com/docview/3228524714
https://pubmed.ncbi.nlm.nih.gov/PMC12238563
https://doaj.org/article/8080693735864d0e8b859586caed224b
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIv4rc9zyWCb1psk7RJH_eWO46FO0Q92LeQj-m5oq1cu3D61ztJ25XV88GnhiaBkEkyv0lmfkPIawU1M46jWcJLnwrPIDVelSlzvKqNMYKLEI18flGeXYrlqljtETbFwkSn_UhpGY_pyTvsXYeKJgSDscCbiRAkRYvnIFC149o-mM-XH5fbm5XwdiXyaoyQybi6pfOOFopk_bchzL8dJf94LY1K6PQBuT-iRzofxvuQ7EHziNwd8kn-eEzW59E1EuiYC-KKIjQOcvTU-C-bLnqUU8TVXd9RiOQRIfKStjWFG-N6up7C_7BEUYv59tv6J_YeHdq_YjGm-eiekMvTk0-Ls3TMpZA6UYk-raCuROactTIH6arMydozX3AwUHsEEawAqJgspQNhnREAQsoCwYYtcpM5_pTsN20DzwkFY6FQytTCWjReMovCdmgZyUyaQM2TkDfT3OrvA2WGjk_dXOlBEholoaMkdJ6Q4zD925aB7jr-aK-v9Ch-HcgvSwRSvFCl8BkoG2jZVOkMeMQgNiFHk_D0uAc7jUcVwh2OECshr7bVuHvCk4hpoN0MbQqGClok5Nkg6-1IEOqwCuFsQtTOKtgZ6m5Ns_4cGbpzBF2qKHlC3k4L5ve4_j0Xh__X_AW5x8KaDpfN6ojs99cbeIkQqbczckeu5GzcGfg9Prl4_wH_LsrFLF47_AI9TBLA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFET24mdA0K8qi3t9tRKezN-TMpWZVOaXUH5UfxGxk6y1fK69RZtsiuvZybfN54XIc8U1Mw4jm4JL30qPIPUeFWmzPGqNsYILkI18nivHB2Ij5NiskZ-DrUwIa1yeCfGF7VvXDgj30TFQ_DiCJivT76mYWpUiK4OIzQ6tdiBs2_osrWvtt-jfJ8ztvVh_90o7acKpE5UYp5WUFcic85amYN0VeZk7ZkvOBioPcIpKwAqJkvpQFhnBICQskDYtUVuMsfxdy-Rywi8WXD25EQuz3RC1EzkVV-bk3G12SI-hho2Ftp9InNK8xX8i2MC_sZt_0zR_C1OG-Fv6wa53vNW-qZTtJtkDWa3yJVukuXZbTIdx6RMoP0UikOKpDxokKfGHy3amMtOkdG385ZCbFsRaj5pU1P4btycTofCQ7yiiJ---TL9gd_uU-mP8TIOGGnvkIML2e-7ZH3WzOA-oWAsFEqZWliLblNmUc0c-mQykyY0BUrIi2Fv9UnXrEPHIDtXupOERknoKAmdJ-Rt2P7lk6HRdvygOT3Uvd3q0HazRArHC1UKn4GyoSGcKp0Bj-zHJmRjEJ7urb_V57qakKfL22i3IRhjZtAsumcKhtRAJOReJ-vlSpBksQqJdELUihasLHX1zmz6OfYGz5HuqaLkCXk5KMz5uv69Fw_-_zeekKuj_fGu3t3e23lIrrGgz-GIW22Q9fnpAh4hMZvbx9EaKPl00eb3C_nwTe0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2sZ3EOSBEaVctpasKUam31I9J2apsSrMrKD-NX8c4j62W1623KHEixzPj-cbzAniusOTaCjJLROpC6TiG2qk05FbkpdZaCumzkXfH6da-fH-QHKzAzz4XxodV9ntis1G7yvoz8iExHikvQQpzWHZhEXsbozenX0PfQcp7Wvt2Gi2L7OD5NzLf6tfbG0TrF5yPNj-92wq7DgOhlbmchTmWuYysNSaLMbN5ZLPScZcI1Fg6Uq08Qcx5lmYWpbFaIsosS0gFmyTWkRX03SuwmnmraACr65vjvY-LEx7vQ5Nx3mXqREINa9KWPqON--KfhKPCeEkbNk0D_oZ0_wzY_M1r2yjD0U240aFY9rZlu1uwgtPbcLXta3l-Bya7TYgmsq4nxREjiO75yTHtjud1E9nOCN_Xs5phU8TCZ4CyqmT4XdsZm_RpiHTFSJu66svkB73dBdaf0GXTbqS-C_uXsuL3YDCtpvgAGGqDiVK6lMaQERUZYjpLFloWZdqXCArgZb-2xWlbuqNoXO5CFS0lCqJE0VCiiANY98u_GOnLbjc3qrOjopPiwhfhTAnQiUSl0kWojC8Pp1Kr0REWMgGs9cQrur2gLi44N4Bni8ckxd41o6dYzdsxCSegIAO439J6MROCXDwnWB2AWuKCpakuP5lOPjeVwmMCfypJRQCveoa5mNe_1-Lh_3_jKVwj0Ss-bI93HsF17tnZn3erNRjMzub4mFDazDzpxIHB4WVL4C8Os1OI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+assisted+adjustment+boosts+efficiency+of+exact+inference+in+randomized+controlled+trials&rft.jtitle=Scientific+reports&rft.au=Yu%2C+Han&rft.au=Hutson%2C+Alan&rft.au=Ma%2C+Xiaoyi&rft.date=2025-07-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-10566-1&rft.externalDocID=10_1038_s41598_025_10566_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon