Machine learning assisted adjustment boosts efficiency of exact inference in randomized controlled trials

In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum’s framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model wi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 24454 - 9
Main Authors Yu, Han, Hutson, Alan, Ma, Xiaoyi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum’s framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-10566-1