Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment--a review

The use of nanoparticles--particles with size approximately 1-100 nm is increasing worldwide. This is particularly the case for applications of titanium dioxide nanoparticles (nano-TiO(2)) in consumer products, which have expanded at a fast rate in the last decade. The properties of nano-TiO(2) diff...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering Vol. 44; no. 14; pp. 1485 - 1495
Main Author Sharma, Virender K
Format Journal Article
LanguageEnglish
Published England 01.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The use of nanoparticles--particles with size approximately 1-100 nm is increasing worldwide. This is particularly the case for applications of titanium dioxide nanoparticles (nano-TiO(2)) in consumer products, which have expanded at a fast rate in the last decade. The properties of nano-TiO(2) differ significantly from bulk-TiO(2) of the same composition because of an increase in surface area. A release of nano-TiO(2) from application sources to the aquatic environment may pose possible risks due to their bioavailability and toxicity. The aggregation of nano-TiO(2) plays an important role in the environmental effects of nanoparticles because the size and shape of nanoparticles will determine the magnitude of any potentially toxic effect. Aggregation is affected by pH, ionic strength, and ionic identity (inorganic and organic) of aqueous suspensions and is reviewed in this paper. The current information on the evaluation of ecotoxicological hazards of nano-TiO(2) to bacteria, algae, invertebrates, nematodes, and rainbow trout is also given.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Feature-1
ISSN:1093-4529
1532-4117
DOI:10.1080/10934520903263231