SAD-Net: a full spectral self-attention detail enhancement network for single image dehazing

Single-image dehazing technology plays a significant role in video surveillance and intelligent transportation. However, existing dehazing methods using vanilla convolution only extract features in the temporal domain and lack the ability to capture multi-directional information. To address the afor...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 11875 - 13
Main Authors Niu, Qingjun, Wu, Kun, Zhang, Jialu, Han, Zhenqi, Liu, Lizhuang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-image dehazing technology plays a significant role in video surveillance and intelligent transportation. However, existing dehazing methods using vanilla convolution only extract features in the temporal domain and lack the ability to capture multi-directional information. To address the aforementioned issues, we design a new full spectral attention-based detail enhancement dehazing network, named SAD-Net. SAD-Net adopts a U-Net-like structure and integrates Spectral Detail Enhancement Convolution (SDEC) and Frequency-Guided Attention (FGA). SDEC combines wavelet transform and difference convolution(DC) to enhance high-frequency features while preserving low-frequency information. FGA detects haze-induced discrepancies and fine-tunes feature modulation. Experimental results show that SAD-Net outperforms six other dehazing networks on the Dense-Haze, NH-Haze, RESIDE and I-Haze datasets. Specifically, it increases the peak signal-to-noise ratio (PSNR) to 17.16 dB on the Dense-Haze dataset, surpassing the current state-of-the-art (SOTA) methods. Additionally, SAD-Net achieves excellent dehazing performance on an external dataset without any prior training.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-92061-1