Oxidized but not native cardiolipin has pro-inflammatory effects, which are inhibited by Annexin A5

Abstract Objective Cardiolipin (CL) is a phospholipid with an unusual dimeric structure containing four double-bonds and is easily oxidized. CL is present in mitochondria. Here we explored potential pro-inflammatory properties implicated in cardiovascular disease (CVD): activation of endothelial cel...

Full description

Saved in:
Bibliographic Details
Published inAtherosclerosis Vol. 235; no. 2; pp. 592 - 598
Main Authors Wan, Min, Hua, Xiang, Su, Jun, Thiagarajan, Divya, Frostegård, Anna G, Haeggström, Jesper Z, Frostegård, Johan
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Objective Cardiolipin (CL) is a phospholipid with an unusual dimeric structure containing four double-bonds and is easily oxidized. CL is present in mitochondria. Here we explored potential pro-inflammatory properties implicated in cardiovascular disease (CVD): activation of endothelial cells, 5-lipoxygenase (5-LOX) and leukotriene B4 (LTB4), by oxidized CL (oxCL) and inhibitory effects of Annexin A5, an antithrombotic and antiinflammatory plasma protein. Methods In monocytes/macrophages and neutrophils, calcium mobilization was monitored spectrophotometrically with Fura-2 and synthesis of LTB4 was analyzed by EIA. Expression of adhesion molecules on endothelial cells was studied by FACScan. Binding of Annexin A5 were analyzed by ELISA. The mRNA expression of 5-LOX and cyclooxygenase-2 was assessed by Real-Time PCR. Results We demonstrate that oxCL but not its non-oxidized counterpart CL induces biosynthesis of LTB4 and increases intracellular concentrations of calcium in monocytes/macrophages and neutrophils. oxCL rather than CL selectively elevates gene expression of 5-LOX but not COX-2 in human macrophages. Furthermore, oxCL but not CL raises levels of adhesion molecules ICAM-1 and VCAM-1 in endothelial cells. Annexin A5 can bind oxCL to abolish all these oxCL-induced effects. Conclusions oxCL may promote inflammation and related diseases especially in conditions involving unresolved apoptosis and necrosis, such as atherosclerosis, where free oxCL is likely to be released from liberated mitochondria. Increased intracellular calcium could activate 5-LOX to produce Leukotriene B4 (LTB4). Annexin A5 inhibits the pro-inflammatory effects of oxCL and its potential therapeutic use when oxCL is implicated in inflammation could be of interest.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9150
1879-1484
1879-1484
DOI:10.1016/j.atherosclerosis.2014.05.913