Lane line detection based on cross-convolutional hybrid attention mechanism
In order to enhance the accuracy and robustness of lane line recognition in dynamic and complex environments, this paper proposes a lane line detection model based on a cross-convolutional hybrid attention mechanism (CCHA-Net). Unlike traditional approaches that separately employ channel and spatial...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 16172 - 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.05.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In order to enhance the accuracy and robustness of lane line recognition in dynamic and complex environments, this paper proposes a lane line detection model based on a cross-convolutional hybrid attention mechanism (CCHA-Net). Unlike traditional approaches that separately employ channel and spatial attention, our proposed mechanism integrates these modalities through cross-convolution, thereby enabling cross-group feature interaction and dynamic spatial weight allocation. This novel integration not only improves the continuity of elongated lane features but also enhances the model’s ability to capture long-range dependencies in challenging scenarios. Additionally, this paper designs a lightweight message-passing module that employs dual-branch multi-scale convolutions to achieve cross-spatial domain feature fusion while reducing the number of parameters. Experimental results demonstrate that CCHA-Net achieves an F1 score of 80.2% on the CULane dataset and an accuracy of 96.8% on the TuSimple dataset, effectively enhancing lane line recognition accuracy in ever-changing and intricate environments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-025-01167-z |