In vivo analysis of noise dependent activation of white blood cells and microvascular dysfunction in mice

This article contains supporting information on data collection for the research article entitled “Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice” by Eckrich et al. We found that noise-induced stress triggered microvascular dysfunctio...

Full description

Saved in:
Bibliographic Details
Published inMethodsX Vol. 8; p. 101540
Main Authors Eckrich, Jonas, Ruan, Yue, Jiang, Subao, Frenis, Katie, Rodriguez-Blanco, Giovanny, Maas, Alexander Philippe, Jimenez, Maria Teresa Bayo, Kuntic, Marin, Oelze, Matthias, Hahad, Omar, Li, Huige, Steven, Sebastian, Strieth, Sebastian, von Kriegsheim, Alex, Münzel, Thomas, Daiber, Andreas, Gericke, Adrian, Ernst, Benjamin Philipp
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article contains supporting information on data collection for the research article entitled “Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice” by Eckrich et al. We found that noise-induced stress triggered microvascular dysfunction via involvement of innate immune-derived reactive oxygen species. In this article, we present the instrumentation of mice with dorsal skinfold chambers for in vivo microscopic imaging of blood flow, interaction of leukocytes with the vascular wall (also by fluorescent labelling of blood cells) and vessel diameter. In addition, we explain the preparation of cerebral arterioles for measurement of vascular reactivity in vitro.•visualization of noise-dependent effects in dorsal skinfold chamber.•in vivo microscopy of noise-dependent activation of white blood cells.•analysis of noise-dependent microvascular dysfunction in dorsal skinfold chamber and cannulated cerebral arterioles. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2215-0161
2215-0161
DOI:10.1016/j.mex.2021.101540