Neural processes of attentional inhibition of return traced with magnetoencephalography

Abstract Inhibition of return (IOR) is a phenomenon that involves reaction times (RTs) to a spatially cued target that are longer than RTs to an uncued target when the interval between the cue and target is prolonged. Although numerous studies have examined IOR, no consensus has yet been reached reg...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 156; no. 3; pp. 769 - 780
Main Authors Ayabe, T, Ishizu, T, Kojima, S, Urakawa, T, Nishitani, N, Kaneoke, Y, Kakigi, R
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.10.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Inhibition of return (IOR) is a phenomenon that involves reaction times (RTs) to a spatially cued target that are longer than RTs to an uncued target when the interval between the cue and target is prolonged. Although numerous studies have examined IOR, no consensus has yet been reached regarding the neural mechanisms responsible for it. We used magnetoencephalography (MEG) and measured the human neural responses underlying the time course of IOR, applying a typical spatial cueing paradigm. The cue-target interval was 600±200 ms. Three experimental conditions were employed. Cued; the cue and target were presented at the same location. Uncued; the two stimuli were presented at opposite locations. Neutral; the cue stimulus was presented bilaterally. We found differences in the amplitudes of signals in the postero-temporal and bilateral temporal areas, and peak latencies in a central area between the cued and uncued conditions. These signals were localized to the extrastriate cortex, bilateral temporal-parietal junction (TPJ), and primary motor cortex, respectively. Bilateral TPJ activities are related to the identification of salient events in the sensory environment both within and independent of the current behavioral context and may play an important role in IOR in addition to extrastriate and the primary motor cortex.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2008.07.064