Neuronal responses in macaque area PEc to saccades and eye position

Abstract Neurons in area PEc in the superior parietal cortex encode signals from different modalities, such as visual, extraretinal and somatosensory, probably combining them to encode spatial parameter of extrapersonal space to prepare body movements. This study reports the characterization of the...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 156; no. 3; pp. 413 - 424
Main Authors Raffi, M, Ballabeni, A, Maioli, M.G, Squatrito, S
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.10.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Neurons in area PEc in the superior parietal cortex encode signals from different modalities, such as visual, extraretinal and somatosensory, probably combining them to encode spatial parameter of extrapersonal space to prepare body movements. This study reports the characterization of the functional properties of PEc non-visual neurons that showed saccade-related activity. We analyzed the pre- and post-saccadic firing activity in 189 neurons recorded in five hemispheres of three behaving monkeys. Spiking activity of PEc single neurons was recorded while the monkeys performed visually-guided saccades in a reaction time task. We found that 84% of neurons recorded from area PEc showed pre-saccadic activity with directional tuning. In 26% of neurons, we found inhibition of activity in the pre-saccadic period. The onset of this “pause” always started before the saccade and, in 51% of neurons, it was invariant among different gaze directions. The post-saccadic activity in these cells was either a phasic response with directional tuning (77%) and/or an eye position tuning (75%). The analysis of the preferred direction did not show hemispheric preference, however, for the majority of neurons, the angular difference in the preferred direction, in the pre- and post-saccadic period, was more than 60°. By confirming, therefore, that PEc neurons carry information about eye position, these novel findings open new horizons on PEc function that, to date, is not well documented. The pre-saccadic activity may reflect an involvement in saccade control, whereas post-saccadic activity may indicate a role in informing on the new eye position. These novel results about saccade and eye position processing may imply a role of area PEc in gaze direction mechanisms and, possibly, in remapping visual space after eye movements.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2008.08.018