Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge

•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to s...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 79; p. 102428
Main Authors Lalande, Alain, Chen, Zhihao, Pommier, Thibaut, Decourselle, Thomas, Qayyum, Abdul, Salomon, Michel, Ginhac, Dominique, Skandarani, Youssef, Boucher, Arnaud, Brahim, Khawla, de Bruijne, Marleen, Camarasa, Robin, Correia, Teresa M., Feng, Xue, Girum, Kibrom B., Hennemuth, Anja, Huellebrand, Markus, Hussain, Raabid, Ivantsits, Matthias, Ma, Jun, Meyer, Craig, Sharma, Rishabh, Shi, Jixi, Tsekos, Nikolaos V., Varela, Marta, Wang, Xiyue, Yang, Sen, Zhang, Hannu, Zhang, Yichi, Zhou, Yuncheng, Zhuang, Xiahai, Couturier, Raphael, Meriaudeau, Fabrice
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2022
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…