Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge

•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to s...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 79; p. 102428
Main Authors Lalande, Alain, Chen, Zhihao, Pommier, Thibaut, Decourselle, Thomas, Qayyum, Abdul, Salomon, Michel, Ginhac, Dominique, Skandarani, Youssef, Boucher, Arnaud, Brahim, Khawla, de Bruijne, Marleen, Camarasa, Robin, Correia, Teresa M., Feng, Xue, Girum, Kibrom B., Hennemuth, Anja, Huellebrand, Markus, Hussain, Raabid, Ivantsits, Matthias, Ma, Jun, Meyer, Craig, Sharma, Rishabh, Shi, Jixi, Tsekos, Nikolaos V., Varela, Marta, Wang, Xiyue, Yang, Sen, Zhang, Hannu, Zhang, Yichi, Zhou, Yuncheng, Zhuang, Xiahai, Couturier, Raphael, Meriaudeau, Fabrice
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2022
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction). [Display omitted] A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1361-8415
1361-8423
DOI:10.1016/j.media.2022.102428