Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to s...
Saved in:
Published in | Medical image analysis Vol. 79; p. 102428 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2022
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction).
[Display omitted]
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures. |
---|---|
AbstractList | A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge's main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures. •Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction). [Display omitted] A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures. A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge's main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures. |
ArticleNumber | 102428 |
Author | Huellebrand, Markus Hussain, Raabid Sharma, Rishabh Zhang, Yichi Salomon, Michel Ginhac, Dominique Brahim, Khawla Camarasa, Robin Zhou, Yuncheng Lalande, Alain Varela, Marta Shi, Jixi Boucher, Arnaud Tsekos, Nikolaos V. Yang, Sen Skandarani, Youssef de Bruijne, Marleen Meyer, Craig Qayyum, Abdul Hennemuth, Anja Zhuang, Xiahai Feng, Xue Ivantsits, Matthias Wang, Xiyue Couturier, Raphael Decourselle, Thomas Meriaudeau, Fabrice Pommier, Thibaut Ma, Jun Correia, Teresa M. Girum, Kibrom B. Chen, Zhihao Zhang, Hannu |
Author_xml | – sequence: 1 givenname: Alain orcidid: 0000-0002-7970-366X surname: Lalande fullname: Lalande, Alain email: alain.lalande@u-bourgogne.fr organization: ImViA Laboratory, University of Burgundy, Dijon, France – sequence: 2 givenname: Zhihao orcidid: 0000-0002-6906-813X surname: Chen fullname: Chen, Zhihao organization: Femto-ST Laboratory, University of Franche-Comté, Belfort, France – sequence: 3 givenname: Thibaut orcidid: 0000-0002-1637-8855 surname: Pommier fullname: Pommier, Thibaut organization: Cardiology Department, University Hospital of Dijon, Dijon, France – sequence: 4 givenname: Thomas orcidid: 0000-0001-6794-5306 surname: Decourselle fullname: Decourselle, Thomas organization: CASIS - CArdiac Simulation & Imaging Software SAS, Quetigny, France – sequence: 5 givenname: Abdul surname: Qayyum fullname: Qayyum, Abdul organization: ImViA Laboratory, University of Burgundy, Dijon, France – sequence: 6 givenname: Michel surname: Salomon fullname: Salomon, Michel organization: Femto-ST Laboratory, University of Franche-Comté, Belfort, France – sequence: 7 givenname: Dominique orcidid: 0000-0002-5911-2010 surname: Ginhac fullname: Ginhac, Dominique organization: ImViA Laboratory, University of Burgundy, Dijon, France – sequence: 8 givenname: Youssef surname: Skandarani fullname: Skandarani, Youssef organization: ImViA Laboratory, University of Burgundy, Dijon, France – sequence: 9 givenname: Arnaud orcidid: 0000-0002-9959-6056 surname: Boucher fullname: Boucher, Arnaud organization: ImViA Laboratory, University of Burgundy, Dijon, France – sequence: 10 givenname: Khawla surname: Brahim fullname: Brahim, Khawla organization: ImViA Laboratory, University of Burgundy, Dijon, France – sequence: 11 givenname: Marleen orcidid: 0000-0002-6328-902X surname: de Bruijne fullname: de Bruijne, Marleen organization: Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, the Netherlands – sequence: 12 givenname: Robin orcidid: 0000-0001-9151-6763 surname: Camarasa fullname: Camarasa, Robin organization: Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, the Netherlands – sequence: 13 givenname: Teresa M. surname: Correia fullname: Correia, Teresa M. organization: Centre of Marine Sciences, University of Algarve, Faro, Portugal – sequence: 14 givenname: Xue orcidid: 0000-0002-2181-9889 surname: Feng fullname: Feng, Xue organization: Department of Biomedical Engineering, University of Virginia, Charlottesville, USA – sequence: 15 givenname: Kibrom B. orcidid: 0000-0003-2511-0225 surname: Girum fullname: Girum, Kibrom B. organization: ImViA Laboratory, University of Burgundy, Dijon, France – sequence: 16 givenname: Anja surname: Hennemuth fullname: Hennemuth, Anja organization: Charité - Universitätsmedizin Berlin, Berlin, Germany – sequence: 17 givenname: Markus orcidid: 0000-0003-4948-0917 surname: Huellebrand fullname: Huellebrand, Markus organization: Charité - Universitätsmedizin Berlin, Berlin, Germany – sequence: 18 givenname: Raabid surname: Hussain fullname: Hussain, Raabid organization: ImViA Laboratory, University of Burgundy, Dijon, France – sequence: 19 givenname: Matthias surname: Ivantsits fullname: Ivantsits, Matthias organization: Charité - Universitätsmedizin Berlin, Berlin, Germany – sequence: 20 givenname: Jun surname: Ma fullname: Ma, Jun organization: Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China – sequence: 21 givenname: Craig orcidid: 0000-0002-7288-3848 surname: Meyer fullname: Meyer, Craig organization: Department of Biomedical Engineering, University of Virginia, Charlottesville, USA – sequence: 22 givenname: Rishabh orcidid: 0000-0002-8515-082X surname: Sharma fullname: Sharma, Rishabh organization: Data Analysis and Intelligent Systems Lab, Department of Computer Science, University of Houston, Houston, USA – sequence: 23 givenname: Jixi surname: Shi fullname: Shi, Jixi organization: Femto-ST Laboratory, University of Franche-Comté, Belfort, France – sequence: 24 givenname: Nikolaos V. surname: Tsekos fullname: Tsekos, Nikolaos V. organization: Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, Houston, USA – sequence: 25 givenname: Marta orcidid: 0000-0003-4057-7851 surname: Varela fullname: Varela, Marta organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 26 givenname: Xiyue orcidid: 0000-0002-3597-9090 surname: Wang fullname: Wang, Xiyue organization: College of Computer Science, Sichuan University, Chengdu, China – sequence: 27 givenname: Sen surname: Yang fullname: Yang, Sen organization: College of Biomedical Engineering, Sichuan University, Chengdu, China – sequence: 28 givenname: Hannu surname: Zhang fullname: Zhang, Hannu organization: Charité - Universitätsmedizin Berlin, Berlin, Germany – sequence: 29 givenname: Yichi orcidid: 0000-0002-4292-6835 surname: Zhang fullname: Zhang, Yichi organization: School of Biological Science and Medical Engineering, Beihang University, Beijing, China – sequence: 30 givenname: Yuncheng surname: Zhou fullname: Zhou, Yuncheng organization: School of Data Science, Fudan University, Shanghai, China – sequence: 31 givenname: Xiahai surname: Zhuang fullname: Zhuang, Xiahai organization: School of Data Science, Fudan University, Shanghai, China – sequence: 32 givenname: Raphael surname: Couturier fullname: Couturier, Raphael organization: Femto-ST Laboratory, University of Franche-Comté, Belfort, France – sequence: 33 givenname: Fabrice surname: Meriaudeau fullname: Meriaudeau, Fabrice organization: ImViA Laboratory, University of Burgundy, Dijon, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35500498$$D View this record in MEDLINE/PubMed https://hal.science/hal-03682606$$DView record in HAL |
BookMark | eNp9kT1v2zAQhokiRT7c_IICBYEuzSCXpCRKGjoEjtsYcFCg8E6cqFNMQyJdUjKQf18qSj106ELeHZ97j-R7Qy6ss0jIR86WnHH59bDssTGwFEyIWBGZKN-Ra55KnpSZSC_OMc-vyE0IB8ZYkWXsklylec5YVpXXxD4gHmmH4K2xz7THYe-aQFvnKYyD62EwmuIJujFGzlLX0gY7eMGGot2D1dijHZKnX5sl3e2RegxjN4SJG2K6fto8rFdU76Hr0D7jB_K-hS7g7du-ILvv693qMdn-_LFZ3W8TnVXZkPAUqlrKtsS6ZRq4lqKsoSpSrArdADZ11UoJLNcci6qsEEooNBc60yJrMV2Qu1k2zlVHb3rwL8qBUY_3WzXVWCpLIZk88ch-mdmjd79HDIPqTdDYdWDRjUEJmVciZSwuC_L5H_TgRm_jQ5QoolxeCjFR6Uxp70Lw2J5vwJmanFMH9eqcmpxTs3Ox69Ob9ljH03PPX6si8G0GMP7byaBXQRuMBjTGox5U48x_B_wBNMirSg |
CitedBy_id | crossref_primary_10_3390_a16100488 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_1186_s12880_024_01217_4 crossref_primary_10_1002_ima_23010 crossref_primary_10_1016_j_compbiomed_2023_107840 crossref_primary_10_1016_j_inffus_2024_102226 crossref_primary_10_3389_fcvm_2023_1136760 crossref_primary_10_1016_j_artmed_2022_102476 crossref_primary_10_1016_j_compmedimag_2022_102088 crossref_primary_10_1016_j_cmpb_2023_107841 crossref_primary_10_3390_app14072986 |
Cites_doi | 10.1038/s41592-020-01008-z 10.1016/S0020-7373(87)80053-6 10.1177/0278364913491297 10.1109/TMI.2008.2006512 10.1109/TMI.2018.2837502 10.1161/01.CIR.100.19.1992 10.1016/0002-9149(67)90023-9 10.1080/00220670209598786 10.1016/j.media.2020.101832 10.1161/hc0402.102975 10.1162/neco.2006.18.7.1527 10.2967/jnumed.106.038851 10.3390/data5040089 10.1016/j.compmedimag.2019.04.005 10.1161/01.CIR.0000142045.22628.74 10.1214/aos/1013203451 10.1016/j.ejheart.2003.11.012 10.1016/j.media.2016.01.004 10.2307/1403797 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. Copyright Elsevier BV Jul 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. – notice: Copyright Elsevier BV Jul 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES |
DOI | 10.1016/j.media.2022.102428 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1361-8423 |
EndPage | 102428 |
ExternalDocumentID | oai_HAL_hal_03682606v1 10_1016_j_media_2022_102428 35500498 S1361841522000792 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AAXKI ADVLN AFJKZ AKRWK NPM AAYXX CITATION 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 |
IngestDate | Tue Oct 15 15:15:32 EDT 2024 Sat Oct 05 05:13:25 EDT 2024 Thu Oct 10 22:57:16 EDT 2024 Thu Sep 26 19:04:47 EDT 2024 Wed Oct 16 00:41:25 EDT 2024 Fri Feb 23 02:41:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Myocardium CNN Infarction DE-MRI |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5911-2010 0000-0002-1637-8855 0000-0001-6794-5306 0000-0002-7970-366X 0000-0002-9959-6056 0000-0003-4057-7851 0000-0003-4948-0917 0000-0002-4292-6835 0000-0002-7288-3848 0000-0001-9151-6763 0000-0002-6328-902X 0000-0003-2511-0225 0000-0002-3597-9090 0000-0002-6906-813X 0000-0002-2181-9889 0000-0002-8515-082X 0009-0002-3873-1127 0000-0001-7776-0751 0000-0002-8656-9913 0000-0002-1137-9349 0000-0002-0227-8167 0000-0003-1252-439X 0000-0003-3102-1595 |
OpenAccessLink | https://hal.science/hal-03682606 |
PMID | 35500498 |
PQID | 2726058222 |
PQPubID | 2045428 |
PageCount | 1 |
ParticipantIDs | hal_primary_oai_HAL_hal_03682606v1 proquest_miscellaneous_2659230092 proquest_journals_2726058222 crossref_primary_10_1016_j_media_2022_102428 pubmed_primary_35500498 elsevier_sciencedirect_doi_10_1016_j_media_2022_102428 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | Bernard, Lalande, Zotti, Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Gonzalez Ballester, Sanroma, Napel, Petersen, Tziritas, Grinias, Khened, Kollerathu, Krishnamurthi, Rohé, Pennec, Sermesant, Isensee, Jäger, Maier-Hein, Full, Wolf, Engelhardt, Baumgartner, Koch, Wolterink, Išgum, Jang, Hong, Patravali, Jain, Humbert, Jodoin (bib0001) 2018; 37 Taghanaki, Zheng, Zhou, Georgescu, Sharma, Xu, Comaniciu, Hamarneh (bib0045) 2019; 75 Karim, Bhagirath, Claus, James Housden, Chen, Karimaghaloo, Sohn, Lara Rodríguez, Vera, Albà, Hennemuth, Peitgen, Arbel, Gonzàlez Ballester, Frangi, Götte, Razavi, Schaeffter, Rhode (bib0024) 2016; 30 Shi, Chen, Couturier (bib0042) 2021 Cochet, Zeller, Cottin, Robert-Valla, Lalande, L’Huilllier, Comte, Walker, Desgres, Wolf, Brunotte (bib0008) 2004; 6 Friedman (bib0011) 2001; 29 Clevert, Unterthiner, Hochreiter (bib0007) 2016 Camarasa, Faure, Crozier, Bos, de Bruijne (bib0004) 2021 Selvanayagam, Kardos, Francis, Wiesmann, Petersen, Taggart, Neubauer (bib0040) 2004; 110 He, Zhang, Ren, Sun (bib0015) 2016 Ramachandran, P., Zoph, B., Le, Q. V., 2017. Searching for activation functions Xiong, Xia, Hu, Huang, Bian, Zheng, Vesal, Ravikumar, Maier, Yang, Heng, Ni, Li, Tong, Si, Puybareau, Khoudli, Géraud, Chen, Bai, Rueckert, Xu, Zhuang, Luo, Jia, Sermesant, Liu, Wang, Borra, Masci, Corsi, de Vente, Veta, Karim, Preetha, Engelhardt, Qiao, Wang, Tao, Nuñez-Garcia, Camara, Savioli, Lamata, Zhao (bib0048) 2021; 67 Yang, Wang (bib0049) 2021 Brahim, Qayyum, Lalande, Boucher, Sakly, Meriaudeau (bib0002) 2021 Krizhevsky, Sutskever, Hinton (bib0027) 2012 Schinkel, Poldermans, Elhendy, Bax (bib0038) 2007; 48 Yue, Luo, Ye, Xu, Zhuang (bib0050) 2019 Sudre, Li, Vercauteren, Ourselin, Cardoso (bib0043) 2017 Hu, Shen, Sun (bib0020) 2018 Killip, Kimball (bib0025) 1967; 20 Lourenço, Kerfoot, Grigorescu, Scannell, Varela, Correia (bib0031) 2021 Hinton, Osindero, Teh (bib0018) 2006; 18 Lalande, Chen, Decourselle, Qayyum, Pommier, Lorgis, de la Rosa, Cochet, Cottin, Ginhac, Salomon, Couturier, Meriaudeau (bib0028) 2020; 5 Zhang, Cissé, Dauphin, Lopez-Paz (bib0051) 2018 Scholkopf (bib0039) 2001 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0046) 2017 Fix, Hodges (bib0010) 1989; 57 Ronneberger, Fischer, Brox (bib0037) 2015 Geiger, Lenz, Stiller, Urtasun (bib0012) 2013; 37 Ho (bib0019) 1995 Glorot, Bordes, Bengio (bib0014) 2011 Peng, Lee, Ingersoll (bib0034) 2002; 96 Szegedy, Ioffe, Vanhoucke, Alemi (bib0044) 2017 Zhang (bib0052) 2021 Zhou, Zhang, Luo, Wang, Zhuang (bib0053) 2021 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib0022) 2021; 18 Quinlan (bib0035) 1987; 27 Cetin, Sanroma, Petersen, Napel, Camara, Ballester, Lekadir (bib0006) 2018 Oktay, O., Schlemper, J., Le Folgoc, L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Y Hammerla, N., Kainz, B., et al., 2018. Attention U-Net: learning where to look for the pancreas. arXiv e-prints, arXiv-1804. Sharma, Eick, Tsekos (bib0041) 2021 Feng, Kramer, Salerno, Meyer (bib0009) 2021 Breiman (bib0003) 1996 Li, Wang, Hu, Yang (bib0029) 2019 Huellebrand, Ivantsits, Zhang, Kohlmann, Kuhnigk, Kuehne, Schönberg, Hennemuth (bib0021) 2021 Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan (bib0005) 2002; 105 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0030) 2014 Milletari, Navab, Ahmadi (bib0032) 2016 Hennemuth, Friman, Huellebrand, Peitgen (bib0016) 2013 Hennemuth, Seeger, Friman, Miller, Oeltze, otto Peitgen (bib0017) 2008; 27 Ivantsits, Huellebrand, Kelle, Schönberg, Kuehne, Hennemuth (bib0023) 2021 Xie, Girshick, Dollar, Tu, He (bib0047) 2017 Girum, Skandarani, Hussain, Grayeli, Créhange, Lalande (bib0013) 2021 Kim, Fieno, Parrish, Harris, Chen, Simonetti, Bundy, Finn, Klocke, Judd (bib0026) 1999; 100 Friedman (10.1016/j.media.2022.102428_bib0011) 2001; 29 He (10.1016/j.media.2022.102428_bib0015) 2016 Karim (10.1016/j.media.2022.102428_bib0024) 2016; 30 Fix (10.1016/j.media.2022.102428_bib0010) 1989; 57 Lalande (10.1016/j.media.2022.102428_bib0028) 2020; 5 Kim (10.1016/j.media.2022.102428_bib0026) 1999; 100 Cetin (10.1016/j.media.2022.102428_bib0006) 2018 Milletari (10.1016/j.media.2022.102428_bib0032) 2016 Zhou (10.1016/j.media.2022.102428_bib0053) 2021 Shi (10.1016/j.media.2022.102428_bib0042) 2021 Clevert (10.1016/j.media.2022.102428_bib0007) 2016 Sudre (10.1016/j.media.2022.102428_bib0043) 2017 Glorot (10.1016/j.media.2022.102428_bib0014) 2011 Feng (10.1016/j.media.2022.102428_bib0009) 2021 Xie (10.1016/j.media.2022.102428_bib0047) 2017 Ronneberger (10.1016/j.media.2022.102428_bib0037) 2015 Scholkopf (10.1016/j.media.2022.102428_bib0039) 2001 Geiger (10.1016/j.media.2022.102428_bib0012) 2013; 37 Hennemuth (10.1016/j.media.2022.102428_bib0017) 2008; 27 Sharma (10.1016/j.media.2022.102428_bib0041) 2021 Bernard (10.1016/j.media.2022.102428_bib0001) 2018; 37 Vaswani (10.1016/j.media.2022.102428_bib0046) 2017 Krizhevsky (10.1016/j.media.2022.102428_bib0027) 2012 Ivantsits (10.1016/j.media.2022.102428_bib0023) 2021 Taghanaki (10.1016/j.media.2022.102428_bib0045) 2019; 75 Hennemuth (10.1016/j.media.2022.102428_bib0016) 2013 Hu (10.1016/j.media.2022.102428_bib0020) 2018 Zhang (10.1016/j.media.2022.102428_bib0051) 2018 Ho (10.1016/j.media.2022.102428_bib0019) 1995 Hinton (10.1016/j.media.2022.102428_bib0018) 2006; 18 Camarasa (10.1016/j.media.2022.102428_bib0004) 2021 Yang (10.1016/j.media.2022.102428_bib0049) 2021 Cochet (10.1016/j.media.2022.102428_bib0008) 2004; 6 Isensee (10.1016/j.media.2022.102428_bib0022) 2021; 18 Selvanayagam (10.1016/j.media.2022.102428_bib0040) 2004; 110 Huellebrand (10.1016/j.media.2022.102428_bib0021) 2021 Yue (10.1016/j.media.2022.102428_bib0050) 2019 Killip (10.1016/j.media.2022.102428_bib0025) 1967; 20 Peng (10.1016/j.media.2022.102428_bib0034) 2002; 96 Li (10.1016/j.media.2022.102428_bib0029) 2019 Szegedy (10.1016/j.media.2022.102428_bib0044) 2017 Girum (10.1016/j.media.2022.102428_bib0013) 2021 Quinlan (10.1016/j.media.2022.102428_bib0035) 1987; 27 Breiman (10.1016/j.media.2022.102428_bib0003) 1996 Schinkel (10.1016/j.media.2022.102428_bib0038) 2007; 48 Cerqueira (10.1016/j.media.2022.102428_bib0005) 2002; 105 Xiong (10.1016/j.media.2022.102428_bib0048) 2021; 67 10.1016/j.media.2022.102428_bib0036 Lourenço (10.1016/j.media.2022.102428_bib0031) 2021 10.1016/j.media.2022.102428_bib0033 Lin (10.1016/j.media.2022.102428_bib0030) 2014 Brahim (10.1016/j.media.2022.102428_bib0002) 2021 Zhang (10.1016/j.media.2022.102428_bib0052) 2021 |
References_xml | – volume: 100 start-page: 1992 year: 1999 end-page: 2002 ident: bib0026 article-title: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function publication-title: Circulation contributor: fullname: Judd – volume: 37 start-page: 1231 year: 2013 end-page: 1237 ident: bib0012 article-title: Vision meets robotics: the KITTI dataset publication-title: Int. J. Robot. Res. contributor: fullname: Urtasun – volume: 96 start-page: 3 year: 2002 end-page: 14 ident: bib0034 article-title: An introduction to logistic regression analysis and reporting publication-title: J. Educ. Res. contributor: fullname: Ingersoll – volume: 27 start-page: 221 year: 1987 end-page: 234 ident: bib0035 article-title: Simplifying decision trees publication-title: Int. J. Man-Machine Stud. contributor: fullname: Quinlan – start-page: 315 year: 2011 end-page: 323 ident: bib0014 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics contributor: fullname: Bengio – start-page: 240 year: 2017 end-page: 248 ident: bib0043 article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support - Third International Workshop, DLMIA contributor: fullname: Cardoso – start-page: 4278 year: 2017 end-page: 4284 ident: bib0044 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence contributor: fullname: Alemi – volume: 75 start-page: 24 year: 2019 end-page: 33 ident: bib0045 article-title: Combo loss: handling input and output imbalance in multi-organ segmentation publication-title: Comput. Med. Imaging Graph. contributor: fullname: Hamarneh – volume: 27 start-page: 1592 year: 2008 end-page: 1610 ident: bib0017 article-title: A comprehensive approach to the analysis of contrast enhanced cardiac MR images publication-title: IEEE Trans. Med. Imaging contributor: fullname: otto Peitgen – start-page: 278 year: 1995 ident: bib0019 article-title: Random decision forests publication-title: Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1) contributor: fullname: Ho – volume: 5 year: 2020 ident: bib0028 article-title: Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI publication-title: Data contributor: fullname: Meriaudeau – volume: 57 start-page: 238 year: 1989 end-page: 247 ident: bib0010 article-title: Discriminatory analysis. Nonparametric discrimination: consistency properties publication-title: Int. Stat. Rev. contributor: fullname: Hodges – year: 2018 ident: bib0051 article-title: mixup: Beyond empirical risk minimization publication-title: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings contributor: fullname: Lopez-Paz – start-page: 234 year: 2015 end-page: 241 ident: bib0037 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 contributor: fullname: Brox – volume: 67 start-page: 101832 year: 2021 ident: bib0048 article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging publication-title: Med. Image Anal. contributor: fullname: Zhao – volume: 37 start-page: 2514 year: 2018 end-page: 2525 ident: bib0001 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? publication-title: IEEE Trans. Med. Imaging contributor: fullname: Jodoin – volume: 30 start-page: 95 year: 2016 end-page: 107 ident: bib0024 article-title: Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement mr images publication-title: Med. Image Anal. contributor: fullname: Rhode – start-page: 770 year: 2016 end-page: 778 ident: bib0015 article-title: Deep residual learning for image recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR contributor: fullname: Sun – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bib0011 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. contributor: fullname: Friedman – volume: 18 start-page: 1 year: 2021 end-page: 9 ident: bib0022 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods contributor: fullname: Maier-Hein – start-page: 400 year: 2021 end-page: 405 ident: bib0009 article-title: Automatic scar segmentation from DE-MRI using 2Ddilated UNet with rotation-based augmentation publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Meyer – start-page: 740 year: 2014 end-page: 755 ident: bib0030 article-title: Microsoft coco: common objects in context publication-title: Computer Vision – ECCV 2014 contributor: fullname: Zitnick – start-page: 87 year: 2013 end-page: 96 ident: bib0016 article-title: Mixture-model-based segmentation of myocardial delayed enhancement MRI publication-title: Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges contributor: fullname: Peitgen – start-page: 319 year: 2021 end-page: 327 ident: bib0021 article-title: Comparison of a hybrid mixture model and a CNN for the segmentation of myocardial pathologies in delayed enhancement MRI publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Hennemuth – start-page: 342 year: 2021 end-page: 350 ident: bib0041 article-title: Sm2n2: a stacked architecture for multimodal data and its application to myocardial infarction detection publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Tsekos – start-page: 328 year: 2021 end-page: 333 ident: bib0052 article-title: Cascaded convolutional neural network for automatic myocardial infarction segmentation from delayed-enhancement cardiac MRI publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Zhang – start-page: 378 year: 2021 end-page: 384 ident: bib0013 article-title: Automatic myocardial infarction evaluation from delayed-enhancement cardiac MRI using deep convolutional networks publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Lalande – volume: 20 start-page: 457 year: 1967 end-page: 464 ident: bib0025 article-title: Treatment of myocardial infarction in a coronary care unit: a two year experience with 250 patients publication-title: Am. J. Cardiol. contributor: fullname: Kimball – year: 2012 ident: bib0027 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems contributor: fullname: Hinton – year: 2016 ident: bib0007 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) publication-title: 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings contributor: fullname: Hochreiter – start-page: 359 year: 2021 end-page: 368 ident: bib0002 article-title: Efficient 3D deep learning for myocardial diseases segmentation publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Meriaudeau – start-page: 406 year: 2021 end-page: 413 ident: bib0042 article-title: Classification of pathological cases of myocardial infarction using convolutional neural network and random forest publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Couturier – volume: 110 start-page: 1535 year: 2004 end-page: 1541 ident: bib0040 article-title: Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization publication-title: Circulation contributor: fullname: Neubauer – start-page: 82 year: 2018 end-page: 90 ident: bib0006 article-title: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI publication-title: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges contributor: fullname: Lekadir – start-page: 351 year: 2021 end-page: 358 ident: bib0049 article-title: A hybrid network for automatic myocardial infarction segmentation in delayed enhancement-MRI publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Wang – start-page: 565 year: 2016 end-page: 571 ident: bib0032 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth International Conference on 3D Vision (3DV) contributor: fullname: Ahmadi – start-page: 5987 year: 2017 end-page: 5995 ident: bib0047 article-title: Aggregated residual transformations for deep neural networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) contributor: fullname: He – start-page: 334 year: 2021 end-page: 341 ident: bib0031 article-title: Automatic myocardial disease prediction from delayed-enhancement cardiac MRI and clinical information publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Correia – year: 1996 ident: bib0003 article-title: Bias, Variance, and Arcing Classifiers publication-title: Technical Report contributor: fullname: Breiman – volume: 48 start-page: 1135 year: 2007 end-page: 1146 ident: bib0038 article-title: Assessment of myocardial viability in patients with heart failure publication-title: J. Nucl. Med. contributor: fullname: Bax – start-page: 559 year: 2019 end-page: 567 ident: bib0050 article-title: Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 contributor: fullname: Zhuang – start-page: 7132 year: 2018 end-page: 7141 ident: bib0020 article-title: Squeeze-and-excitation networks publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition contributor: fullname: Sun – start-page: 385 year: 2021 end-page: 391 ident: bib0004 article-title: Uncertainty-based segmentation of myocardial infarction areas on cardiac MR images publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: de Bruijne – start-page: 392 year: 2021 end-page: 399 ident: bib0053 article-title: Anatomy prior based U-Net for pathology segmentation with attention publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Zhuang – volume: 105 start-page: 539 year: 2002 end-page: 542 ident: bib0005 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association publication-title: Circulation contributor: fullname: Ryan – volume: 6 start-page: 555 year: 2004 end-page: 560 ident: bib0008 article-title: The extent of myocardial damage assessed by contrast-enhanced MRI is a major determinant of N-BNP concentration after myocardial infarction publication-title: Eur. J. Heart Fail. contributor: fullname: Brunotte – start-page: 510 year: 2019 end-page: 519 ident: bib0029 article-title: Selective kernel networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019 contributor: fullname: Yang – start-page: 301 year: 2001 end-page: 307 ident: bib0039 article-title: The kernel trick for distances publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Scholkopf – year: 2017 ident: bib0046 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems contributor: fullname: Polosukhin – start-page: 369 year: 2021 end-page: 377 ident: bib0023 article-title: Deep-learning-based myocardial pathology detection publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges contributor: fullname: Hennemuth – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib0018 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. contributor: fullname: Teh – year: 1996 ident: 10.1016/j.media.2022.102428_bib0003 article-title: Bias, Variance, and Arcing Classifiers contributor: fullname: Breiman – start-page: 740 year: 2014 ident: 10.1016/j.media.2022.102428_bib0030 article-title: Microsoft coco: common objects in context contributor: fullname: Lin – volume: 18 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.media.2022.102428_bib0022 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z contributor: fullname: Isensee – start-page: 319 year: 2021 ident: 10.1016/j.media.2022.102428_bib0021 article-title: Comparison of a hybrid mixture model and a CNN for the segmentation of myocardial pathologies in delayed enhancement MRI contributor: fullname: Huellebrand – volume: 27 start-page: 221 issue: 3 year: 1987 ident: 10.1016/j.media.2022.102428_bib0035 article-title: Simplifying decision trees publication-title: Int. J. Man-Machine Stud. doi: 10.1016/S0020-7373(87)80053-6 contributor: fullname: Quinlan – start-page: 4278 year: 2017 ident: 10.1016/j.media.2022.102428_bib0044 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning contributor: fullname: Szegedy – start-page: 328 year: 2021 ident: 10.1016/j.media.2022.102428_bib0052 article-title: Cascaded convolutional neural network for automatic myocardial infarction segmentation from delayed-enhancement cardiac MRI contributor: fullname: Zhang – volume: 37 start-page: 1231 year: 2013 ident: 10.1016/j.media.2022.102428_bib0012 article-title: Vision meets robotics: the KITTI dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913491297 contributor: fullname: Geiger – start-page: 559 year: 2019 ident: 10.1016/j.media.2022.102428_bib0050 article-title: Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors contributor: fullname: Yue – year: 2016 ident: 10.1016/j.media.2022.102428_bib0007 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) contributor: fullname: Clevert – start-page: 351 year: 2021 ident: 10.1016/j.media.2022.102428_bib0049 article-title: A hybrid network for automatic myocardial infarction segmentation in delayed enhancement-MRI contributor: fullname: Yang – start-page: 369 year: 2021 ident: 10.1016/j.media.2022.102428_bib0023 article-title: Deep-learning-based myocardial pathology detection contributor: fullname: Ivantsits – start-page: 240 year: 2017 ident: 10.1016/j.media.2022.102428_bib0043 article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations contributor: fullname: Sudre – year: 2018 ident: 10.1016/j.media.2022.102428_bib0051 article-title: mixup: Beyond empirical risk minimization contributor: fullname: Zhang – volume: 27 start-page: 1592 issue: 11 year: 2008 ident: 10.1016/j.media.2022.102428_bib0017 article-title: A comprehensive approach to the analysis of contrast enhanced cardiac MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2006512 contributor: fullname: Hennemuth – volume: 37 start-page: 2514 issue: 11 year: 2018 ident: 10.1016/j.media.2022.102428_bib0001 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837502 contributor: fullname: Bernard – start-page: 359 year: 2021 ident: 10.1016/j.media.2022.102428_bib0002 article-title: Efficient 3D deep learning for myocardial diseases segmentation contributor: fullname: Brahim – start-page: 278 year: 1995 ident: 10.1016/j.media.2022.102428_bib0019 article-title: Random decision forests contributor: fullname: Ho – volume: 100 start-page: 1992 issue: 19 year: 1999 ident: 10.1016/j.media.2022.102428_bib0026 article-title: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function publication-title: Circulation doi: 10.1161/01.CIR.100.19.1992 contributor: fullname: Kim – start-page: 301 year: 2001 ident: 10.1016/j.media.2022.102428_bib0039 article-title: The kernel trick for distances contributor: fullname: Scholkopf – start-page: 334 year: 2021 ident: 10.1016/j.media.2022.102428_bib0031 article-title: Automatic myocardial disease prediction from delayed-enhancement cardiac MRI and clinical information contributor: fullname: Lourenço – start-page: 565 year: 2016 ident: 10.1016/j.media.2022.102428_bib0032 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation contributor: fullname: Milletari – volume: 20 start-page: 457 issue: 4 year: 1967 ident: 10.1016/j.media.2022.102428_bib0025 article-title: Treatment of myocardial infarction in a coronary care unit: a two year experience with 250 patients publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(67)90023-9 contributor: fullname: Killip – start-page: 400 year: 2021 ident: 10.1016/j.media.2022.102428_bib0009 article-title: Automatic scar segmentation from DE-MRI using 2Ddilated UNet with rotation-based augmentation contributor: fullname: Feng – start-page: 7132 year: 2018 ident: 10.1016/j.media.2022.102428_bib0020 article-title: Squeeze-and-excitation networks contributor: fullname: Hu – volume: 96 start-page: 3 issue: 1 year: 2002 ident: 10.1016/j.media.2022.102428_bib0034 article-title: An introduction to logistic regression analysis and reporting publication-title: J. Educ. Res. doi: 10.1080/00220670209598786 contributor: fullname: Peng – year: 2012 ident: 10.1016/j.media.2022.102428_bib0027 article-title: ImageNet classification with deep convolutional neural networks contributor: fullname: Krizhevsky – start-page: 385 year: 2021 ident: 10.1016/j.media.2022.102428_bib0004 article-title: Uncertainty-based segmentation of myocardial infarction areas on cardiac MR images contributor: fullname: Camarasa – volume: 67 start-page: 101832 year: 2021 ident: 10.1016/j.media.2022.102428_bib0048 article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101832 contributor: fullname: Xiong – start-page: 392 year: 2021 ident: 10.1016/j.media.2022.102428_bib0053 article-title: Anatomy prior based U-Net for pathology segmentation with attention contributor: fullname: Zhou – volume: 105 start-page: 539 issue: 4 year: 2002 ident: 10.1016/j.media.2022.102428_bib0005 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association publication-title: Circulation doi: 10.1161/hc0402.102975 contributor: fullname: Cerqueira – start-page: 342 year: 2021 ident: 10.1016/j.media.2022.102428_bib0041 article-title: Sm2n2: a stacked architecture for multimodal data and its application to myocardial infarction detection contributor: fullname: Sharma – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.media.2022.102428_bib0018 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 contributor: fullname: Hinton – volume: 48 start-page: 1135 issue: 7 year: 2007 ident: 10.1016/j.media.2022.102428_bib0038 article-title: Assessment of myocardial viability in patients with heart failure publication-title: J. Nucl. Med. doi: 10.2967/jnumed.106.038851 contributor: fullname: Schinkel – volume: 5 issue: 4 year: 2020 ident: 10.1016/j.media.2022.102428_bib0028 article-title: Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI publication-title: Data doi: 10.3390/data5040089 contributor: fullname: Lalande – start-page: 82 year: 2018 ident: 10.1016/j.media.2022.102428_bib0006 article-title: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI contributor: fullname: Cetin – start-page: 378 year: 2021 ident: 10.1016/j.media.2022.102428_bib0013 article-title: Automatic myocardial infarction evaluation from delayed-enhancement cardiac MRI using deep convolutional networks contributor: fullname: Girum – start-page: 510 year: 2019 ident: 10.1016/j.media.2022.102428_bib0029 article-title: Selective kernel networks contributor: fullname: Li – ident: 10.1016/j.media.2022.102428_bib0033 – start-page: 87 year: 2013 ident: 10.1016/j.media.2022.102428_bib0016 article-title: Mixture-model-based segmentation of myocardial delayed enhancement MRI contributor: fullname: Hennemuth – volume: 75 start-page: 24 year: 2019 ident: 10.1016/j.media.2022.102428_bib0045 article-title: Combo loss: handling input and output imbalance in multi-organ segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.04.005 contributor: fullname: Taghanaki – volume: 110 start-page: 1535 issue: 12 year: 2004 ident: 10.1016/j.media.2022.102428_bib0040 article-title: Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization publication-title: Circulation doi: 10.1161/01.CIR.0000142045.22628.74 contributor: fullname: Selvanayagam – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.media.2022.102428_bib0011 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 contributor: fullname: Friedman – volume: 6 start-page: 555 issue: 5 year: 2004 ident: 10.1016/j.media.2022.102428_bib0008 article-title: The extent of myocardial damage assessed by contrast-enhanced MRI is a major determinant of N-BNP concentration after myocardial infarction publication-title: Eur. J. Heart Fail. doi: 10.1016/j.ejheart.2003.11.012 contributor: fullname: Cochet – start-page: 315 year: 2011 ident: 10.1016/j.media.2022.102428_bib0014 article-title: Deep sparse rectifier neural networks contributor: fullname: Glorot – volume: 30 start-page: 95 year: 2016 ident: 10.1016/j.media.2022.102428_bib0024 article-title: Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement mr images publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.01.004 contributor: fullname: Karim – start-page: 406 year: 2021 ident: 10.1016/j.media.2022.102428_bib0042 article-title: Classification of pathological cases of myocardial infarction using convolutional neural network and random forest contributor: fullname: Shi – year: 2017 ident: 10.1016/j.media.2022.102428_bib0046 article-title: Attention is all you need contributor: fullname: Vaswani – start-page: 770 year: 2016 ident: 10.1016/j.media.2022.102428_bib0015 article-title: Deep residual learning for image recognition contributor: fullname: He – start-page: 234 year: 2015 ident: 10.1016/j.media.2022.102428_bib0037 article-title: U-Net: convolutional networks for biomedical image segmentation contributor: fullname: Ronneberger – ident: 10.1016/j.media.2022.102428_bib0036 – volume: 57 start-page: 238 issue: 3 year: 1989 ident: 10.1016/j.media.2022.102428_bib0010 article-title: Discriminatory analysis. Nonparametric discrimination: consistency properties publication-title: Int. Stat. Rev. doi: 10.2307/1403797 contributor: fullname: Fix – start-page: 5987 year: 2017 ident: 10.1016/j.media.2022.102428_bib0047 article-title: Aggregated residual transformations for deep neural networks contributor: fullname: Xie |
SSID | ssj0007440 |
Score | 2.544293 |
Snippet | •Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in... A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or... |
SourceID | hal proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 102428 |
SubjectTerms | CNN Computer Science Contrast agents DE-MRI Deep learning Emergency medical care Evaluation Heart attacks Infarction Injection Machine learning Magnetic resonance imaging Medical Imaging Myocardial infarction Myocardium Reperfusion Segmentation Teaching methods |
Title | Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge |
URI | https://dx.doi.org/10.1016/j.media.2022.102428 https://www.ncbi.nlm.nih.gov/pubmed/35500498 https://www.proquest.com/docview/2726058222 https://search.proquest.com/docview/2659230092 https://hal.science/hal-03682606 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiE4VFDaklIqgziSbpx47fi42rbaAtsDFKk3y6-0RSi7YneReulvZyaPLUjAgWMcR04873jmG4C3HHkW5TmkLsqQCul56rxyqdQqFMGqkDVdIqbncvJFvL8cXm7AuK-FobTKTve3Or3R1t3IoNvNwfzmZvCZF9SsBO0PVZsoTXpYoPlDnj66u0_zIAC8tvaKpzS7Rx5qcrya6gwMEvOcIAwEtWT_s3V6cE1pkn_zQRtbdPoUtjonko3a93wGG7Hehie_QAtuw6Npd2j-HOrjGOesaw9xxdqe0QuG3iqzq-WswWxl96jfbFYxgo68jYHF-pq4gv4gptNPZ0cMuYphgL76tlzQPPQeGRLy-GTMfN-VZQcuTk8uxpO0a7OQeqEFNaO32klZldFVmbfcy7x0VqsiauWDjcHpSkqbDT2PSpc62tIqz3MvfC6qWOzCZj2r4wtgSgyLysaCB-7RMUH9hSJeBW1VdG6YVQm863fXzFswDdNnmX01DTEMEcO0xEhA9hQwv_GEQXX_7wff4DevlyAE7cnoo6ExNNgYUGXyB0_goCen6eR2YXJF8R05TQm8Xt9GiaNjFFvH2Qrn0El0QWBVCey1bLBeCr03irnK_f999ZfwmK7ahOAD2Fx-X8VX6PYs3WHD14fwcHT2YXL-E3fi_9Y |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVoJyQFBehgIL4ogbr-3seo9R2sqhSQ4QpN5W-zItqpyIJEj8e2b8CCABB67rtWzvPPYb78w3AG856izas49tED7OheOxddLGQkmfeSN90nSJmM1F-Sl_fzm83INxXwtDaZWd7299euOtu5FBt5qD1fX14CPPqFkJ7j9UbSIV-uEDRAMKrfNgNLko5zuHTBx4bfkVj-mGnnyoSfNqCjQwTkxTYjHIqSv7nzeoW1eUKfk3GNpsR-f34V6HI9mofdUHsBfqI7j7C7vgEdyedefmD6E-DWHFug4Rn1nbNnrNELAys90sG9pW9pP4my0rRuyR34Nnob4ixaCfiPHsw-SEoWIxjNG3N5s1zUMAyVCWp2dj5vrGLI9gcX62GJdx12khdrnKqR-9UVaIqgi2SpzhTqSFNUpmQUnnTfBWVUKYZOh4kKpQwRRGOp663KV5FbLHsF8v6_AUmMyHWWVCxj13iE3QhaGVV14ZGawdJlUE7_rV1auWT0P3iWZfdCMMTcLQrTAiEL0E9G9qodHj__vGN_jNu0cQiXY5mmoawz0bY6pEfOMRHPfi1J3prnUqKcQj3BTB691lNDo6STF1WG5xDh1GZ8RXFcGTVg12j0IAR2FX8ex_X_0V3CkXs6meTuYXz-GQrrT5wcewv_m6DS8QBW3sy07LfwBGKAKZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+methods+for+automatic+evaluation+of+delayed+enhancement-MRI.+The+results+of+the+EMIDEC+challenge&rft.jtitle=Medical+image+analysis&rft.au=Lalande%2C+Alain&rft.au=Chen%2C+Zhihao&rft.au=Pommier%2C+Thibaut&rft.au=Decourselle%2C+Thomas&rft.date=2022-07-01&rft.pub=Elsevier&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=79&rft_id=info:doi/10.1016%2Fj.media.2022.102428&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03682606v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |