Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge

•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to s...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 79; p. 102428
Main Authors Lalande, Alain, Chen, Zhihao, Pommier, Thibaut, Decourselle, Thomas, Qayyum, Abdul, Salomon, Michel, Ginhac, Dominique, Skandarani, Youssef, Boucher, Arnaud, Brahim, Khawla, de Bruijne, Marleen, Camarasa, Robin, Correia, Teresa M., Feng, Xue, Girum, Kibrom B., Hennemuth, Anja, Huellebrand, Markus, Hussain, Raabid, Ivantsits, Matthias, Ma, Jun, Meyer, Craig, Sharma, Rishabh, Shi, Jixi, Tsekos, Nikolaos V., Varela, Marta, Wang, Xiyue, Yang, Sen, Zhang, Hannu, Zhang, Yichi, Zhou, Yuncheng, Zhuang, Xiahai, Couturier, Raphael, Meriaudeau, Fabrice
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2022
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction). [Display omitted] A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.
AbstractList A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge's main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.
•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction). [Display omitted] A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge's main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.
ArticleNumber 102428
Author Huellebrand, Markus
Hussain, Raabid
Sharma, Rishabh
Zhang, Yichi
Salomon, Michel
Ginhac, Dominique
Brahim, Khawla
Camarasa, Robin
Zhou, Yuncheng
Lalande, Alain
Varela, Marta
Shi, Jixi
Boucher, Arnaud
Tsekos, Nikolaos V.
Yang, Sen
Skandarani, Youssef
de Bruijne, Marleen
Meyer, Craig
Qayyum, Abdul
Hennemuth, Anja
Zhuang, Xiahai
Feng, Xue
Ivantsits, Matthias
Wang, Xiyue
Couturier, Raphael
Decourselle, Thomas
Meriaudeau, Fabrice
Pommier, Thibaut
Ma, Jun
Correia, Teresa M.
Girum, Kibrom B.
Chen, Zhihao
Zhang, Hannu
Author_xml – sequence: 1
  givenname: Alain
  orcidid: 0000-0002-7970-366X
  surname: Lalande
  fullname: Lalande, Alain
  email: alain.lalande@u-bourgogne.fr
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 2
  givenname: Zhihao
  orcidid: 0000-0002-6906-813X
  surname: Chen
  fullname: Chen, Zhihao
  organization: Femto-ST Laboratory, University of Franche-Comté, Belfort, France
– sequence: 3
  givenname: Thibaut
  orcidid: 0000-0002-1637-8855
  surname: Pommier
  fullname: Pommier, Thibaut
  organization: Cardiology Department, University Hospital of Dijon, Dijon, France
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0001-6794-5306
  surname: Decourselle
  fullname: Decourselle, Thomas
  organization: CASIS - CArdiac Simulation & Imaging Software SAS, Quetigny, France
– sequence: 5
  givenname: Abdul
  surname: Qayyum
  fullname: Qayyum, Abdul
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 6
  givenname: Michel
  surname: Salomon
  fullname: Salomon, Michel
  organization: Femto-ST Laboratory, University of Franche-Comté, Belfort, France
– sequence: 7
  givenname: Dominique
  orcidid: 0000-0002-5911-2010
  surname: Ginhac
  fullname: Ginhac, Dominique
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 8
  givenname: Youssef
  surname: Skandarani
  fullname: Skandarani, Youssef
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 9
  givenname: Arnaud
  orcidid: 0000-0002-9959-6056
  surname: Boucher
  fullname: Boucher, Arnaud
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 10
  givenname: Khawla
  surname: Brahim
  fullname: Brahim, Khawla
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 11
  givenname: Marleen
  orcidid: 0000-0002-6328-902X
  surname: de Bruijne
  fullname: de Bruijne, Marleen
  organization: Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, the Netherlands
– sequence: 12
  givenname: Robin
  orcidid: 0000-0001-9151-6763
  surname: Camarasa
  fullname: Camarasa, Robin
  organization: Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, the Netherlands
– sequence: 13
  givenname: Teresa M.
  surname: Correia
  fullname: Correia, Teresa M.
  organization: Centre of Marine Sciences, University of Algarve, Faro, Portugal
– sequence: 14
  givenname: Xue
  orcidid: 0000-0002-2181-9889
  surname: Feng
  fullname: Feng, Xue
  organization: Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
– sequence: 15
  givenname: Kibrom B.
  orcidid: 0000-0003-2511-0225
  surname: Girum
  fullname: Girum, Kibrom B.
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 16
  givenname: Anja
  surname: Hennemuth
  fullname: Hennemuth, Anja
  organization: Charité - Universitätsmedizin Berlin, Berlin, Germany
– sequence: 17
  givenname: Markus
  orcidid: 0000-0003-4948-0917
  surname: Huellebrand
  fullname: Huellebrand, Markus
  organization: Charité - Universitätsmedizin Berlin, Berlin, Germany
– sequence: 18
  givenname: Raabid
  surname: Hussain
  fullname: Hussain, Raabid
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 19
  givenname: Matthias
  surname: Ivantsits
  fullname: Ivantsits, Matthias
  organization: Charité - Universitätsmedizin Berlin, Berlin, Germany
– sequence: 20
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
  organization: Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
– sequence: 21
  givenname: Craig
  orcidid: 0000-0002-7288-3848
  surname: Meyer
  fullname: Meyer, Craig
  organization: Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
– sequence: 22
  givenname: Rishabh
  orcidid: 0000-0002-8515-082X
  surname: Sharma
  fullname: Sharma, Rishabh
  organization: Data Analysis and Intelligent Systems Lab, Department of Computer Science, University of Houston, Houston, USA
– sequence: 23
  givenname: Jixi
  surname: Shi
  fullname: Shi, Jixi
  organization: Femto-ST Laboratory, University of Franche-Comté, Belfort, France
– sequence: 24
  givenname: Nikolaos V.
  surname: Tsekos
  fullname: Tsekos, Nikolaos V.
  organization: Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, Houston, USA
– sequence: 25
  givenname: Marta
  orcidid: 0000-0003-4057-7851
  surname: Varela
  fullname: Varela, Marta
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 26
  givenname: Xiyue
  orcidid: 0000-0002-3597-9090
  surname: Wang
  fullname: Wang, Xiyue
  organization: College of Computer Science, Sichuan University, Chengdu, China
– sequence: 27
  givenname: Sen
  surname: Yang
  fullname: Yang, Sen
  organization: College of Biomedical Engineering, Sichuan University, Chengdu, China
– sequence: 28
  givenname: Hannu
  surname: Zhang
  fullname: Zhang, Hannu
  organization: Charité - Universitätsmedizin Berlin, Berlin, Germany
– sequence: 29
  givenname: Yichi
  orcidid: 0000-0002-4292-6835
  surname: Zhang
  fullname: Zhang, Yichi
  organization: School of Biological Science and Medical Engineering, Beihang University, Beijing, China
– sequence: 30
  givenname: Yuncheng
  surname: Zhou
  fullname: Zhou, Yuncheng
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 31
  givenname: Xiahai
  surname: Zhuang
  fullname: Zhuang, Xiahai
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 32
  givenname: Raphael
  surname: Couturier
  fullname: Couturier, Raphael
  organization: Femto-ST Laboratory, University of Franche-Comté, Belfort, France
– sequence: 33
  givenname: Fabrice
  surname: Meriaudeau
  fullname: Meriaudeau, Fabrice
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35500498$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03682606$$DView record in HAL
BookMark eNp9kT1v2zAQhokiRT7c_IICBYEuzSCXpCRKGjoEjtsYcFCg8E6cqFNMQyJdUjKQf18qSj106ELeHZ97j-R7Qy6ss0jIR86WnHH59bDssTGwFEyIWBGZKN-Ra55KnpSZSC_OMc-vyE0IB8ZYkWXsklylec5YVpXXxD4gHmmH4K2xz7THYe-aQFvnKYyD62EwmuIJujFGzlLX0gY7eMGGot2D1dijHZKnX5sl3e2RegxjN4SJG2K6fto8rFdU76Hr0D7jB_K-hS7g7du-ILvv693qMdn-_LFZ3W8TnVXZkPAUqlrKtsS6ZRq4lqKsoSpSrArdADZ11UoJLNcci6qsEEooNBc60yJrMV2Qu1k2zlVHb3rwL8qBUY_3WzXVWCpLIZk88ch-mdmjd79HDIPqTdDYdWDRjUEJmVciZSwuC_L5H_TgRm_jQ5QoolxeCjFR6Uxp70Lw2J5vwJmanFMH9eqcmpxTs3Ox69Ob9ljH03PPX6si8G0GMP7byaBXQRuMBjTGox5U48x_B_wBNMirSg
CitedBy_id crossref_primary_10_3390_a16100488
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1186_s12880_024_01217_4
crossref_primary_10_1002_ima_23010
crossref_primary_10_1016_j_compbiomed_2023_107840
crossref_primary_10_1016_j_inffus_2024_102226
crossref_primary_10_3389_fcvm_2023_1136760
crossref_primary_10_1016_j_artmed_2022_102476
crossref_primary_10_1016_j_compmedimag_2022_102088
crossref_primary_10_1016_j_cmpb_2023_107841
crossref_primary_10_3390_app14072986
Cites_doi 10.1038/s41592-020-01008-z
10.1016/S0020-7373(87)80053-6
10.1177/0278364913491297
10.1109/TMI.2008.2006512
10.1109/TMI.2018.2837502
10.1161/01.CIR.100.19.1992
10.1016/0002-9149(67)90023-9
10.1080/00220670209598786
10.1016/j.media.2020.101832
10.1161/hc0402.102975
10.1162/neco.2006.18.7.1527
10.2967/jnumed.106.038851
10.3390/data5040089
10.1016/j.compmedimag.2019.04.005
10.1161/01.CIR.0000142045.22628.74
10.1214/aos/1013203451
10.1016/j.ejheart.2003.11.012
10.1016/j.media.2016.01.004
10.2307/1403797
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright Elsevier BV Jul 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Jul 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1016/j.media.2022.102428
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1361-8423
EndPage 102428
ExternalDocumentID oai_HAL_hal_03682606v1
10_1016_j_media_2022_102428
35500498
S1361841522000792
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AAXKI
ADVLN
AFJKZ
AKRWK
NPM
AAYXX
CITATION
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3
IEDL.DBID .~1
ISSN 1361-8415
IngestDate Tue Oct 15 15:15:32 EDT 2024
Sat Oct 05 05:13:25 EDT 2024
Thu Oct 10 22:57:16 EDT 2024
Thu Sep 26 19:04:47 EDT 2024
Wed Oct 16 00:41:25 EDT 2024
Fri Feb 23 02:41:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Myocardium
CNN
Infarction
DE-MRI
Language English
License Copyright © 2022. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5911-2010
0000-0002-1637-8855
0000-0001-6794-5306
0000-0002-7970-366X
0000-0002-9959-6056
0000-0003-4057-7851
0000-0003-4948-0917
0000-0002-4292-6835
0000-0002-7288-3848
0000-0001-9151-6763
0000-0002-6328-902X
0000-0003-2511-0225
0000-0002-3597-9090
0000-0002-6906-813X
0000-0002-2181-9889
0000-0002-8515-082X
0009-0002-3873-1127
0000-0001-7776-0751
0000-0002-8656-9913
0000-0002-1137-9349
0000-0002-0227-8167
0000-0003-1252-439X
0000-0003-3102-1595
OpenAccessLink https://hal.science/hal-03682606
PMID 35500498
PQID 2726058222
PQPubID 2045428
PageCount 1
ParticipantIDs hal_primary_oai_HAL_hal_03682606v1
proquest_miscellaneous_2659230092
proquest_journals_2726058222
crossref_primary_10_1016_j_media_2022_102428
pubmed_primary_35500498
elsevier_sciencedirect_doi_10_1016_j_media_2022_102428
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Bernard, Lalande, Zotti, Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Gonzalez Ballester, Sanroma, Napel, Petersen, Tziritas, Grinias, Khened, Kollerathu, Krishnamurthi, Rohé, Pennec, Sermesant, Isensee, Jäger, Maier-Hein, Full, Wolf, Engelhardt, Baumgartner, Koch, Wolterink, Išgum, Jang, Hong, Patravali, Jain, Humbert, Jodoin (bib0001) 2018; 37
Taghanaki, Zheng, Zhou, Georgescu, Sharma, Xu, Comaniciu, Hamarneh (bib0045) 2019; 75
Karim, Bhagirath, Claus, James Housden, Chen, Karimaghaloo, Sohn, Lara Rodríguez, Vera, Albà, Hennemuth, Peitgen, Arbel, Gonzàlez Ballester, Frangi, Götte, Razavi, Schaeffter, Rhode (bib0024) 2016; 30
Shi, Chen, Couturier (bib0042) 2021
Cochet, Zeller, Cottin, Robert-Valla, Lalande, L’Huilllier, Comte, Walker, Desgres, Wolf, Brunotte (bib0008) 2004; 6
Friedman (bib0011) 2001; 29
Clevert, Unterthiner, Hochreiter (bib0007) 2016
Camarasa, Faure, Crozier, Bos, de Bruijne (bib0004) 2021
Selvanayagam, Kardos, Francis, Wiesmann, Petersen, Taggart, Neubauer (bib0040) 2004; 110
He, Zhang, Ren, Sun (bib0015) 2016
Ramachandran, P., Zoph, B., Le, Q. V., 2017. Searching for activation functions
Xiong, Xia, Hu, Huang, Bian, Zheng, Vesal, Ravikumar, Maier, Yang, Heng, Ni, Li, Tong, Si, Puybareau, Khoudli, Géraud, Chen, Bai, Rueckert, Xu, Zhuang, Luo, Jia, Sermesant, Liu, Wang, Borra, Masci, Corsi, de Vente, Veta, Karim, Preetha, Engelhardt, Qiao, Wang, Tao, Nuñez-Garcia, Camara, Savioli, Lamata, Zhao (bib0048) 2021; 67
Yang, Wang (bib0049) 2021
Brahim, Qayyum, Lalande, Boucher, Sakly, Meriaudeau (bib0002) 2021
Krizhevsky, Sutskever, Hinton (bib0027) 2012
Schinkel, Poldermans, Elhendy, Bax (bib0038) 2007; 48
Yue, Luo, Ye, Xu, Zhuang (bib0050) 2019
Sudre, Li, Vercauteren, Ourselin, Cardoso (bib0043) 2017
Hu, Shen, Sun (bib0020) 2018
Killip, Kimball (bib0025) 1967; 20
Lourenço, Kerfoot, Grigorescu, Scannell, Varela, Correia (bib0031) 2021
Hinton, Osindero, Teh (bib0018) 2006; 18
Lalande, Chen, Decourselle, Qayyum, Pommier, Lorgis, de la Rosa, Cochet, Cottin, Ginhac, Salomon, Couturier, Meriaudeau (bib0028) 2020; 5
Zhang, Cissé, Dauphin, Lopez-Paz (bib0051) 2018
Scholkopf (bib0039) 2001
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0046) 2017
Fix, Hodges (bib0010) 1989; 57
Ronneberger, Fischer, Brox (bib0037) 2015
Geiger, Lenz, Stiller, Urtasun (bib0012) 2013; 37
Ho (bib0019) 1995
Glorot, Bordes, Bengio (bib0014) 2011
Peng, Lee, Ingersoll (bib0034) 2002; 96
Szegedy, Ioffe, Vanhoucke, Alemi (bib0044) 2017
Zhang (bib0052) 2021
Zhou, Zhang, Luo, Wang, Zhuang (bib0053) 2021
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib0022) 2021; 18
Quinlan (bib0035) 1987; 27
Cetin, Sanroma, Petersen, Napel, Camara, Ballester, Lekadir (bib0006) 2018
Oktay, O., Schlemper, J., Le Folgoc, L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Y Hammerla, N., Kainz, B., et al., 2018. Attention U-Net: learning where to look for the pancreas. arXiv e-prints, arXiv-1804.
Sharma, Eick, Tsekos (bib0041) 2021
Feng, Kramer, Salerno, Meyer (bib0009) 2021
Breiman (bib0003) 1996
Li, Wang, Hu, Yang (bib0029) 2019
Huellebrand, Ivantsits, Zhang, Kohlmann, Kuhnigk, Kuehne, Schönberg, Hennemuth (bib0021) 2021
Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan (bib0005) 2002; 105
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0030) 2014
Milletari, Navab, Ahmadi (bib0032) 2016
Hennemuth, Friman, Huellebrand, Peitgen (bib0016) 2013
Hennemuth, Seeger, Friman, Miller, Oeltze, otto Peitgen (bib0017) 2008; 27
Ivantsits, Huellebrand, Kelle, Schönberg, Kuehne, Hennemuth (bib0023) 2021
Xie, Girshick, Dollar, Tu, He (bib0047) 2017
Girum, Skandarani, Hussain, Grayeli, Créhange, Lalande (bib0013) 2021
Kim, Fieno, Parrish, Harris, Chen, Simonetti, Bundy, Finn, Klocke, Judd (bib0026) 1999; 100
Friedman (10.1016/j.media.2022.102428_bib0011) 2001; 29
He (10.1016/j.media.2022.102428_bib0015) 2016
Karim (10.1016/j.media.2022.102428_bib0024) 2016; 30
Fix (10.1016/j.media.2022.102428_bib0010) 1989; 57
Lalande (10.1016/j.media.2022.102428_bib0028) 2020; 5
Kim (10.1016/j.media.2022.102428_bib0026) 1999; 100
Cetin (10.1016/j.media.2022.102428_bib0006) 2018
Milletari (10.1016/j.media.2022.102428_bib0032) 2016
Zhou (10.1016/j.media.2022.102428_bib0053) 2021
Shi (10.1016/j.media.2022.102428_bib0042) 2021
Clevert (10.1016/j.media.2022.102428_bib0007) 2016
Sudre (10.1016/j.media.2022.102428_bib0043) 2017
Glorot (10.1016/j.media.2022.102428_bib0014) 2011
Feng (10.1016/j.media.2022.102428_bib0009) 2021
Xie (10.1016/j.media.2022.102428_bib0047) 2017
Ronneberger (10.1016/j.media.2022.102428_bib0037) 2015
Scholkopf (10.1016/j.media.2022.102428_bib0039) 2001
Geiger (10.1016/j.media.2022.102428_bib0012) 2013; 37
Hennemuth (10.1016/j.media.2022.102428_bib0017) 2008; 27
Sharma (10.1016/j.media.2022.102428_bib0041) 2021
Bernard (10.1016/j.media.2022.102428_bib0001) 2018; 37
Vaswani (10.1016/j.media.2022.102428_bib0046) 2017
Krizhevsky (10.1016/j.media.2022.102428_bib0027) 2012
Ivantsits (10.1016/j.media.2022.102428_bib0023) 2021
Taghanaki (10.1016/j.media.2022.102428_bib0045) 2019; 75
Hennemuth (10.1016/j.media.2022.102428_bib0016) 2013
Hu (10.1016/j.media.2022.102428_bib0020) 2018
Zhang (10.1016/j.media.2022.102428_bib0051) 2018
Ho (10.1016/j.media.2022.102428_bib0019) 1995
Hinton (10.1016/j.media.2022.102428_bib0018) 2006; 18
Camarasa (10.1016/j.media.2022.102428_bib0004) 2021
Yang (10.1016/j.media.2022.102428_bib0049) 2021
Cochet (10.1016/j.media.2022.102428_bib0008) 2004; 6
Isensee (10.1016/j.media.2022.102428_bib0022) 2021; 18
Selvanayagam (10.1016/j.media.2022.102428_bib0040) 2004; 110
Huellebrand (10.1016/j.media.2022.102428_bib0021) 2021
Yue (10.1016/j.media.2022.102428_bib0050) 2019
Killip (10.1016/j.media.2022.102428_bib0025) 1967; 20
Peng (10.1016/j.media.2022.102428_bib0034) 2002; 96
Li (10.1016/j.media.2022.102428_bib0029) 2019
Szegedy (10.1016/j.media.2022.102428_bib0044) 2017
Girum (10.1016/j.media.2022.102428_bib0013) 2021
Quinlan (10.1016/j.media.2022.102428_bib0035) 1987; 27
Breiman (10.1016/j.media.2022.102428_bib0003) 1996
Schinkel (10.1016/j.media.2022.102428_bib0038) 2007; 48
Cerqueira (10.1016/j.media.2022.102428_bib0005) 2002; 105
Xiong (10.1016/j.media.2022.102428_bib0048) 2021; 67
10.1016/j.media.2022.102428_bib0036
Lourenço (10.1016/j.media.2022.102428_bib0031) 2021
10.1016/j.media.2022.102428_bib0033
Lin (10.1016/j.media.2022.102428_bib0030) 2014
Brahim (10.1016/j.media.2022.102428_bib0002) 2021
Zhang (10.1016/j.media.2022.102428_bib0052) 2021
References_xml – volume: 100
  start-page: 1992
  year: 1999
  end-page: 2002
  ident: bib0026
  article-title: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function
  publication-title: Circulation
  contributor:
    fullname: Judd
– volume: 37
  start-page: 1231
  year: 2013
  end-page: 1237
  ident: bib0012
  article-title: Vision meets robotics: the KITTI dataset
  publication-title: Int. J. Robot. Res.
  contributor:
    fullname: Urtasun
– volume: 96
  start-page: 3
  year: 2002
  end-page: 14
  ident: bib0034
  article-title: An introduction to logistic regression analysis and reporting
  publication-title: J. Educ. Res.
  contributor:
    fullname: Ingersoll
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: bib0035
  article-title: Simplifying decision trees
  publication-title: Int. J. Man-Machine Stud.
  contributor:
    fullname: Quinlan
– start-page: 315
  year: 2011
  end-page: 323
  ident: bib0014
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
  contributor:
    fullname: Bengio
– start-page: 240
  year: 2017
  end-page: 248
  ident: bib0043
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support - Third International Workshop, DLMIA
  contributor:
    fullname: Cardoso
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: bib0044
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
  contributor:
    fullname: Alemi
– volume: 75
  start-page: 24
  year: 2019
  end-page: 33
  ident: bib0045
  article-title: Combo loss: handling input and output imbalance in multi-organ segmentation
  publication-title: Comput. Med. Imaging Graph.
  contributor:
    fullname: Hamarneh
– volume: 27
  start-page: 1592
  year: 2008
  end-page: 1610
  ident: bib0017
  article-title: A comprehensive approach to the analysis of contrast enhanced cardiac MR images
  publication-title: IEEE Trans. Med. Imaging
  contributor:
    fullname: otto Peitgen
– start-page: 278
  year: 1995
  ident: bib0019
  article-title: Random decision forests
  publication-title: Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1)
  contributor:
    fullname: Ho
– volume: 5
  year: 2020
  ident: bib0028
  article-title: Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI
  publication-title: Data
  contributor:
    fullname: Meriaudeau
– volume: 57
  start-page: 238
  year: 1989
  end-page: 247
  ident: bib0010
  article-title: Discriminatory analysis. Nonparametric discrimination: consistency properties
  publication-title: Int. Stat. Rev.
  contributor:
    fullname: Hodges
– year: 2018
  ident: bib0051
  article-title: mixup: Beyond empirical risk minimization
  publication-title: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings
  contributor:
    fullname: Lopez-Paz
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0037
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
  contributor:
    fullname: Brox
– volume: 67
  start-page: 101832
  year: 2021
  ident: bib0048
  article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging
  publication-title: Med. Image Anal.
  contributor:
    fullname: Zhao
– volume: 37
  start-page: 2514
  year: 2018
  end-page: 2525
  ident: bib0001
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
  contributor:
    fullname: Jodoin
– volume: 30
  start-page: 95
  year: 2016
  end-page: 107
  ident: bib0024
  article-title: Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement mr images
  publication-title: Med. Image Anal.
  contributor:
    fullname: Rhode
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0015
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
  contributor:
    fullname: Sun
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib0011
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  contributor:
    fullname: Friedman
– volume: 18
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib0022
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  contributor:
    fullname: Maier-Hein
– start-page: 400
  year: 2021
  end-page: 405
  ident: bib0009
  article-title: Automatic scar segmentation from DE-MRI using 2Ddilated UNet with rotation-based augmentation
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Meyer
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib0030
  article-title: Microsoft coco: common objects in context
  publication-title: Computer Vision – ECCV 2014
  contributor:
    fullname: Zitnick
– start-page: 87
  year: 2013
  end-page: 96
  ident: bib0016
  article-title: Mixture-model-based segmentation of myocardial delayed enhancement MRI
  publication-title: Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
  contributor:
    fullname: Peitgen
– start-page: 319
  year: 2021
  end-page: 327
  ident: bib0021
  article-title: Comparison of a hybrid mixture model and a CNN for the segmentation of myocardial pathologies in delayed enhancement MRI
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Hennemuth
– start-page: 342
  year: 2021
  end-page: 350
  ident: bib0041
  article-title: Sm2n2: a stacked architecture for multimodal data and its application to myocardial infarction detection
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Tsekos
– start-page: 328
  year: 2021
  end-page: 333
  ident: bib0052
  article-title: Cascaded convolutional neural network for automatic myocardial infarction segmentation from delayed-enhancement cardiac MRI
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Zhang
– start-page: 378
  year: 2021
  end-page: 384
  ident: bib0013
  article-title: Automatic myocardial infarction evaluation from delayed-enhancement cardiac MRI using deep convolutional networks
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Lalande
– volume: 20
  start-page: 457
  year: 1967
  end-page: 464
  ident: bib0025
  article-title: Treatment of myocardial infarction in a coronary care unit: a two year experience with 250 patients
  publication-title: Am. J. Cardiol.
  contributor:
    fullname: Kimball
– year: 2012
  ident: bib0027
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Hinton
– year: 2016
  ident: bib0007
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings
  contributor:
    fullname: Hochreiter
– start-page: 359
  year: 2021
  end-page: 368
  ident: bib0002
  article-title: Efficient 3D deep learning for myocardial diseases segmentation
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Meriaudeau
– start-page: 406
  year: 2021
  end-page: 413
  ident: bib0042
  article-title: Classification of pathological cases of myocardial infarction using convolutional neural network and random forest
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Couturier
– volume: 110
  start-page: 1535
  year: 2004
  end-page: 1541
  ident: bib0040
  article-title: Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization
  publication-title: Circulation
  contributor:
    fullname: Neubauer
– start-page: 82
  year: 2018
  end-page: 90
  ident: bib0006
  article-title: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI
  publication-title: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges
  contributor:
    fullname: Lekadir
– start-page: 351
  year: 2021
  end-page: 358
  ident: bib0049
  article-title: A hybrid network for automatic myocardial infarction segmentation in delayed enhancement-MRI
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Wang
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib0032
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
  contributor:
    fullname: Ahmadi
– start-page: 5987
  year: 2017
  end-page: 5995
  ident: bib0047
  article-title: Aggregated residual transformations for deep neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  contributor:
    fullname: He
– start-page: 334
  year: 2021
  end-page: 341
  ident: bib0031
  article-title: Automatic myocardial disease prediction from delayed-enhancement cardiac MRI and clinical information
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Correia
– year: 1996
  ident: bib0003
  article-title: Bias, Variance, and Arcing Classifiers
  publication-title: Technical Report
  contributor:
    fullname: Breiman
– volume: 48
  start-page: 1135
  year: 2007
  end-page: 1146
  ident: bib0038
  article-title: Assessment of myocardial viability in patients with heart failure
  publication-title: J. Nucl. Med.
  contributor:
    fullname: Bax
– start-page: 559
  year: 2019
  end-page: 567
  ident: bib0050
  article-title: Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
  contributor:
    fullname: Zhuang
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib0020
  article-title: Squeeze-and-excitation networks
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
  contributor:
    fullname: Sun
– start-page: 385
  year: 2021
  end-page: 391
  ident: bib0004
  article-title: Uncertainty-based segmentation of myocardial infarction areas on cardiac MR images
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: de Bruijne
– start-page: 392
  year: 2021
  end-page: 399
  ident: bib0053
  article-title: Anatomy prior based U-Net for pathology segmentation with attention
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Zhuang
– volume: 105
  start-page: 539
  year: 2002
  end-page: 542
  ident: bib0005
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association
  publication-title: Circulation
  contributor:
    fullname: Ryan
– volume: 6
  start-page: 555
  year: 2004
  end-page: 560
  ident: bib0008
  article-title: The extent of myocardial damage assessed by contrast-enhanced MRI is a major determinant of N-BNP concentration after myocardial infarction
  publication-title: Eur. J. Heart Fail.
  contributor:
    fullname: Brunotte
– start-page: 510
  year: 2019
  end-page: 519
  ident: bib0029
  article-title: Selective kernel networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019
  contributor:
    fullname: Yang
– start-page: 301
  year: 2001
  end-page: 307
  ident: bib0039
  article-title: The kernel trick for distances
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Scholkopf
– year: 2017
  ident: bib0046
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Polosukhin
– start-page: 369
  year: 2021
  end-page: 377
  ident: bib0023
  article-title: Deep-learning-based myocardial pathology detection
  publication-title: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges
  contributor:
    fullname: Hennemuth
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0018
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  contributor:
    fullname: Teh
– year: 1996
  ident: 10.1016/j.media.2022.102428_bib0003
  article-title: Bias, Variance, and Arcing Classifiers
  contributor:
    fullname: Breiman
– start-page: 740
  year: 2014
  ident: 10.1016/j.media.2022.102428_bib0030
  article-title: Microsoft coco: common objects in context
  contributor:
    fullname: Lin
– volume: 18
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0022
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
  contributor:
    fullname: Isensee
– start-page: 319
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0021
  article-title: Comparison of a hybrid mixture model and a CNN for the segmentation of myocardial pathologies in delayed enhancement MRI
  contributor:
    fullname: Huellebrand
– volume: 27
  start-page: 221
  issue: 3
  year: 1987
  ident: 10.1016/j.media.2022.102428_bib0035
  article-title: Simplifying decision trees
  publication-title: Int. J. Man-Machine Stud.
  doi: 10.1016/S0020-7373(87)80053-6
  contributor:
    fullname: Quinlan
– start-page: 4278
  year: 2017
  ident: 10.1016/j.media.2022.102428_bib0044
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  contributor:
    fullname: Szegedy
– start-page: 328
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0052
  article-title: Cascaded convolutional neural network for automatic myocardial infarction segmentation from delayed-enhancement cardiac MRI
  contributor:
    fullname: Zhang
– volume: 37
  start-page: 1231
  year: 2013
  ident: 10.1016/j.media.2022.102428_bib0012
  article-title: Vision meets robotics: the KITTI dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
  contributor:
    fullname: Geiger
– start-page: 559
  year: 2019
  ident: 10.1016/j.media.2022.102428_bib0050
  article-title: Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors
  contributor:
    fullname: Yue
– year: 2016
  ident: 10.1016/j.media.2022.102428_bib0007
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  contributor:
    fullname: Clevert
– start-page: 351
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0049
  article-title: A hybrid network for automatic myocardial infarction segmentation in delayed enhancement-MRI
  contributor:
    fullname: Yang
– start-page: 369
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0023
  article-title: Deep-learning-based myocardial pathology detection
  contributor:
    fullname: Ivantsits
– start-page: 240
  year: 2017
  ident: 10.1016/j.media.2022.102428_bib0043
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations
  contributor:
    fullname: Sudre
– year: 2018
  ident: 10.1016/j.media.2022.102428_bib0051
  article-title: mixup: Beyond empirical risk minimization
  contributor:
    fullname: Zhang
– volume: 27
  start-page: 1592
  issue: 11
  year: 2008
  ident: 10.1016/j.media.2022.102428_bib0017
  article-title: A comprehensive approach to the analysis of contrast enhanced cardiac MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.2006512
  contributor:
    fullname: Hennemuth
– volume: 37
  start-page: 2514
  issue: 11
  year: 2018
  ident: 10.1016/j.media.2022.102428_bib0001
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837502
  contributor:
    fullname: Bernard
– start-page: 359
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0002
  article-title: Efficient 3D deep learning for myocardial diseases segmentation
  contributor:
    fullname: Brahim
– start-page: 278
  year: 1995
  ident: 10.1016/j.media.2022.102428_bib0019
  article-title: Random decision forests
  contributor:
    fullname: Ho
– volume: 100
  start-page: 1992
  issue: 19
  year: 1999
  ident: 10.1016/j.media.2022.102428_bib0026
  article-title: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function
  publication-title: Circulation
  doi: 10.1161/01.CIR.100.19.1992
  contributor:
    fullname: Kim
– start-page: 301
  year: 2001
  ident: 10.1016/j.media.2022.102428_bib0039
  article-title: The kernel trick for distances
  contributor:
    fullname: Scholkopf
– start-page: 334
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0031
  article-title: Automatic myocardial disease prediction from delayed-enhancement cardiac MRI and clinical information
  contributor:
    fullname: Lourenço
– start-page: 565
  year: 2016
  ident: 10.1016/j.media.2022.102428_bib0032
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
  contributor:
    fullname: Milletari
– volume: 20
  start-page: 457
  issue: 4
  year: 1967
  ident: 10.1016/j.media.2022.102428_bib0025
  article-title: Treatment of myocardial infarction in a coronary care unit: a two year experience with 250 patients
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(67)90023-9
  contributor:
    fullname: Killip
– start-page: 400
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0009
  article-title: Automatic scar segmentation from DE-MRI using 2Ddilated UNet with rotation-based augmentation
  contributor:
    fullname: Feng
– start-page: 7132
  year: 2018
  ident: 10.1016/j.media.2022.102428_bib0020
  article-title: Squeeze-and-excitation networks
  contributor:
    fullname: Hu
– volume: 96
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.media.2022.102428_bib0034
  article-title: An introduction to logistic regression analysis and reporting
  publication-title: J. Educ. Res.
  doi: 10.1080/00220670209598786
  contributor:
    fullname: Peng
– year: 2012
  ident: 10.1016/j.media.2022.102428_bib0027
  article-title: ImageNet classification with deep convolutional neural networks
  contributor:
    fullname: Krizhevsky
– start-page: 385
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0004
  article-title: Uncertainty-based segmentation of myocardial infarction areas on cardiac MR images
  contributor:
    fullname: Camarasa
– volume: 67
  start-page: 101832
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0048
  article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101832
  contributor:
    fullname: Xiong
– start-page: 392
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0053
  article-title: Anatomy prior based U-Net for pathology segmentation with attention
  contributor:
    fullname: Zhou
– volume: 105
  start-page: 539
  issue: 4
  year: 2002
  ident: 10.1016/j.media.2022.102428_bib0005
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association
  publication-title: Circulation
  doi: 10.1161/hc0402.102975
  contributor:
    fullname: Cerqueira
– start-page: 342
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0041
  article-title: Sm2n2: a stacked architecture for multimodal data and its application to myocardial infarction detection
  contributor:
    fullname: Sharma
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.media.2022.102428_bib0018
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
  contributor:
    fullname: Hinton
– volume: 48
  start-page: 1135
  issue: 7
  year: 2007
  ident: 10.1016/j.media.2022.102428_bib0038
  article-title: Assessment of myocardial viability in patients with heart failure
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.106.038851
  contributor:
    fullname: Schinkel
– volume: 5
  issue: 4
  year: 2020
  ident: 10.1016/j.media.2022.102428_bib0028
  article-title: Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI
  publication-title: Data
  doi: 10.3390/data5040089
  contributor:
    fullname: Lalande
– start-page: 82
  year: 2018
  ident: 10.1016/j.media.2022.102428_bib0006
  article-title: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI
  contributor:
    fullname: Cetin
– start-page: 378
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0013
  article-title: Automatic myocardial infarction evaluation from delayed-enhancement cardiac MRI using deep convolutional networks
  contributor:
    fullname: Girum
– start-page: 510
  year: 2019
  ident: 10.1016/j.media.2022.102428_bib0029
  article-title: Selective kernel networks
  contributor:
    fullname: Li
– ident: 10.1016/j.media.2022.102428_bib0033
– start-page: 87
  year: 2013
  ident: 10.1016/j.media.2022.102428_bib0016
  article-title: Mixture-model-based segmentation of myocardial delayed enhancement MRI
  contributor:
    fullname: Hennemuth
– volume: 75
  start-page: 24
  year: 2019
  ident: 10.1016/j.media.2022.102428_bib0045
  article-title: Combo loss: handling input and output imbalance in multi-organ segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.04.005
  contributor:
    fullname: Taghanaki
– volume: 110
  start-page: 1535
  issue: 12
  year: 2004
  ident: 10.1016/j.media.2022.102428_bib0040
  article-title: Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000142045.22628.74
  contributor:
    fullname: Selvanayagam
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.media.2022.102428_bib0011
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
  contributor:
    fullname: Friedman
– volume: 6
  start-page: 555
  issue: 5
  year: 2004
  ident: 10.1016/j.media.2022.102428_bib0008
  article-title: The extent of myocardial damage assessed by contrast-enhanced MRI is a major determinant of N-BNP concentration after myocardial infarction
  publication-title: Eur. J. Heart Fail.
  doi: 10.1016/j.ejheart.2003.11.012
  contributor:
    fullname: Cochet
– start-page: 315
  year: 2011
  ident: 10.1016/j.media.2022.102428_bib0014
  article-title: Deep sparse rectifier neural networks
  contributor:
    fullname: Glorot
– volume: 30
  start-page: 95
  year: 2016
  ident: 10.1016/j.media.2022.102428_bib0024
  article-title: Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement mr images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.01.004
  contributor:
    fullname: Karim
– start-page: 406
  year: 2021
  ident: 10.1016/j.media.2022.102428_bib0042
  article-title: Classification of pathological cases of myocardial infarction using convolutional neural network and random forest
  contributor:
    fullname: Shi
– year: 2017
  ident: 10.1016/j.media.2022.102428_bib0046
  article-title: Attention is all you need
  contributor:
    fullname: Vaswani
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2022.102428_bib0015
  article-title: Deep residual learning for image recognition
  contributor:
    fullname: He
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2022.102428_bib0037
  article-title: U-Net: convolutional networks for biomedical image segmentation
  contributor:
    fullname: Ronneberger
– ident: 10.1016/j.media.2022.102428_bib0036
– volume: 57
  start-page: 238
  issue: 3
  year: 1989
  ident: 10.1016/j.media.2022.102428_bib0010
  article-title: Discriminatory analysis. Nonparametric discrimination: consistency properties
  publication-title: Int. Stat. Rev.
  doi: 10.2307/1403797
  contributor:
    fullname: Fix
– start-page: 5987
  year: 2017
  ident: 10.1016/j.media.2022.102428_bib0047
  article-title: Aggregated residual transformations for deep neural networks
  contributor:
    fullname: Xie
SSID ssj0007440
Score 2.544293
Snippet •Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in...
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or...
SourceID hal
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 102428
SubjectTerms CNN
Computer Science
Contrast agents
DE-MRI
Deep learning
Emergency medical care
Evaluation
Heart attacks
Infarction
Injection
Machine learning
Magnetic resonance imaging
Medical Imaging
Myocardial infarction
Myocardium
Reperfusion
Segmentation
Teaching methods
Title Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
URI https://dx.doi.org/10.1016/j.media.2022.102428
https://www.ncbi.nlm.nih.gov/pubmed/35500498
https://www.proquest.com/docview/2726058222
https://search.proquest.com/docview/2659230092
https://hal.science/hal-03682606
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiE4VFDaklIqgziSbpx47fi42rbaAtsDFKk3y6-0RSi7YneReulvZyaPLUjAgWMcR04873jmG4C3HHkW5TmkLsqQCul56rxyqdQqFMGqkDVdIqbncvJFvL8cXm7AuK-FobTKTve3Or3R1t3IoNvNwfzmZvCZF9SsBO0PVZsoTXpYoPlDnj66u0_zIAC8tvaKpzS7Rx5qcrya6gwMEvOcIAwEtWT_s3V6cE1pkn_zQRtbdPoUtjonko3a93wGG7Hehie_QAtuw6Npd2j-HOrjGOesaw9xxdqe0QuG3iqzq-WswWxl96jfbFYxgo68jYHF-pq4gv4gptNPZ0cMuYphgL76tlzQPPQeGRLy-GTMfN-VZQcuTk8uxpO0a7OQeqEFNaO32klZldFVmbfcy7x0VqsiauWDjcHpSkqbDT2PSpc62tIqz3MvfC6qWOzCZj2r4wtgSgyLysaCB-7RMUH9hSJeBW1VdG6YVQm863fXzFswDdNnmX01DTEMEcO0xEhA9hQwv_GEQXX_7wff4DevlyAE7cnoo6ExNNgYUGXyB0_goCen6eR2YXJF8R05TQm8Xt9GiaNjFFvH2Qrn0El0QWBVCey1bLBeCr03irnK_f999ZfwmK7ahOAD2Fx-X8VX6PYs3WHD14fwcHT2YXL-E3fi_9Y
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVoJyQFBehgIL4ogbr-3seo9R2sqhSQ4QpN5W-zItqpyIJEj8e2b8CCABB67rtWzvPPYb78w3AG856izas49tED7OheOxddLGQkmfeSN90nSJmM1F-Sl_fzm83INxXwtDaZWd7299euOtu5FBt5qD1fX14CPPqFkJ7j9UbSIV-uEDRAMKrfNgNLko5zuHTBx4bfkVj-mGnnyoSfNqCjQwTkxTYjHIqSv7nzeoW1eUKfk3GNpsR-f34V6HI9mofdUHsBfqI7j7C7vgEdyedefmD6E-DWHFug4Rn1nbNnrNELAys90sG9pW9pP4my0rRuyR34Nnob4ixaCfiPHsw-SEoWIxjNG3N5s1zUMAyVCWp2dj5vrGLI9gcX62GJdx12khdrnKqR-9UVaIqgi2SpzhTqSFNUpmQUnnTfBWVUKYZOh4kKpQwRRGOp663KV5FbLHsF8v6_AUmMyHWWVCxj13iE3QhaGVV14ZGawdJlUE7_rV1auWT0P3iWZfdCMMTcLQrTAiEL0E9G9qodHj__vGN_jNu0cQiXY5mmoawz0bY6pEfOMRHPfi1J3prnUqKcQj3BTB691lNDo6STF1WG5xDh1GZ8RXFcGTVg12j0IAR2FX8ex_X_0V3CkXs6meTuYXz-GQrrT5wcewv_m6DS8QBW3sy07LfwBGKAKZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+methods+for+automatic+evaluation+of+delayed+enhancement-MRI.+The+results+of+the+EMIDEC+challenge&rft.jtitle=Medical+image+analysis&rft.au=Lalande%2C+Alain&rft.au=Chen%2C+Zhihao&rft.au=Pommier%2C+Thibaut&rft.au=Decourselle%2C+Thomas&rft.date=2022-07-01&rft.pub=Elsevier&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=79&rft_id=info:doi/10.1016%2Fj.media.2022.102428&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03682606v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon