Mitochondrial Dynamics and Mitochondria-Lysosome Contacts in Neurogenetic Diseases

Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria make physical contacts with almost every other membrane in the cell thus impacting cellular functions. Mutations in mitochondrial dynamics ge...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 16; p. 784880
Main Authors Pijuan, Jordi, Cantarero, Lara, Natera-de Benito, Daniel, Altimir, Arola, Altisent-Huguet, Anna, Díaz-Osorio, Yaiza, Carrera-García, Laura, Expósito-Escudero, Jessica, Ortez, Carlos, Nascimento, Andrés, Hoenicka, Janet, Palau, Francesc
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 31.01.2022
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria make physical contacts with almost every other membrane in the cell thus impacting cellular functions. Mutations in mitochondrial dynamics genes are known to cause neurogenetic diseases. To better understand the consequences on the cellular phenotype and pathophysiology of neurogenetic diseases associated with defective mitochondrial dynamics, we have compared the fibroblasts phenotypes of (i) patients carrying pathogenic variants in genes involved in mitochondrial dynamics such as (also known as ), , , and , and (ii) patients carrying mutated genes that their dysfunction affects mitochondria or induces a mitochondrial phenotype, but that are not directly involved in mitochondrial dynamic network, such as (encoding frataxin, located in the mitochondrial matrix), (hyperfission phenotype), and (enlarged mitochondria phenotype). We identified mitochondrial network alterations in all patients' fibroblasts except for . Functionally, all fibroblasts showed mitochondrial oxidative stress, without membrane potential abnormalities. The lysosomal area and distribution were abnormal in , , , and fibroblasts. These lysosomal alterations correlated with mitochondria-lysosome membrane contact sites (MCSs) defects in exclusively. The study of mitochondrial contacts in all samples further revealed a significant decrease in fibroblasts. GDAP1 and MFN2 are outer mitochondrial membrane (OMM) proteins and both are related to Charcot-Marie Tooth neuropathy. Here we identified their constitutive interaction as well as MFN2 interaction with LAMP-1. Therefore MFN2 is a new mitochondria-lysosome MCSs protein. Interestingly, and fibroblasts carry pathogenic changes that occur in their catalytic domains thus suggesting a functional role of GDAP1 and MFN2 in mitochondria-lysosome MCSs. Finally, we observed starvation-induced autophagy alterations in , , , , and fibroblasts. These genes are related to mitochondrial membrane structure or lipid composition, which would associate the OMM with starvation-induced autophagy. In conclusion, the study of mitochondrial dynamics and mitochondria-lysosome axis in a group of patients with different neurogenetic diseases has deciphered common and unique cellular phenotypes of degrading and non-degrading pathways that shed light on pathophysiological events, new biomarkers and pharmacological targets for these disorders.
AbstractList Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria make physical contacts with almost every other membrane in the cell thus impacting cellular functions. Mutations in mitochondrial dynamics genes are known to cause neurogenetic diseases. To better understand the consequences on the cellular phenotype and pathophysiology of neurogenetic diseases associated with defective mitochondrial dynamics, we have compared the fibroblasts phenotypes of (i) patients carrying pathogenic variants in genes involved in mitochondrial dynamics such as (also known as ), , , and , and (ii) patients carrying mutated genes that their dysfunction affects mitochondria or induces a mitochondrial phenotype, but that are not directly involved in mitochondrial dynamic network, such as (encoding frataxin, located in the mitochondrial matrix), (hyperfission phenotype), and (enlarged mitochondria phenotype). We identified mitochondrial network alterations in all patients' fibroblasts except for . Functionally, all fibroblasts showed mitochondrial oxidative stress, without membrane potential abnormalities. The lysosomal area and distribution were abnormal in , , , and fibroblasts. These lysosomal alterations correlated with mitochondria-lysosome membrane contact sites (MCSs) defects in exclusively. The study of mitochondrial contacts in all samples further revealed a significant decrease in fibroblasts. GDAP1 and MFN2 are outer mitochondrial membrane (OMM) proteins and both are related to Charcot-Marie Tooth neuropathy. Here we identified their constitutive interaction as well as MFN2 interaction with LAMP-1. Therefore MFN2 is a new mitochondria-lysosome MCSs protein. Interestingly, and fibroblasts carry pathogenic changes that occur in their catalytic domains thus suggesting a functional role of GDAP1 and MFN2 in mitochondria-lysosome MCSs. Finally, we observed starvation-induced autophagy alterations in , , , , and fibroblasts. These genes are related to mitochondrial membrane structure or lipid composition, which would associate the OMM with starvation-induced autophagy. In conclusion, the study of mitochondrial dynamics and mitochondria-lysosome axis in a group of patients with different neurogenetic diseases has deciphered common and unique cellular phenotypes of degrading and non-degrading pathways that shed light on pathophysiological events, new biomarkers and pharmacological targets for these disorders.
Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria make physical contacts with almost every other membrane in the cell thus impacting cellular functions. Mutations in mitochondrial dynamics genes are known to cause neurogenetic diseases. To better understand the consequences on the cellular phenotype and pathophysiology of neurogenetic diseases associated with defective mitochondrial dynamics, we have compared the fibroblasts phenotypes of (i) patients carrying pathogenic variants in genes involved in mitochondrial dynamics such as DRP1 (also known as DNM1L), GDAP1, OPA1, and MFN2, and (ii) patients carrying mutated genes that their dysfunction affects mitochondria or induces a mitochondrial phenotype, but that are not directly involved in mitochondrial dynamic network, such as FXN (encoding frataxin, located in the mitochondrial matrix), MED13 (hyperfission phenotype), and CHKB (enlarged mitochondria phenotype). We identified mitochondrial network alterations in all patients’ fibroblasts except for CHKBQ198*/Q198*. Functionally, all fibroblasts showed mitochondrial oxidative stress, without membrane potential abnormalities. The lysosomal area and distribution were abnormal in GDAP1W67L/W67L, DRP1K75E/+, OPA1F570L/+, and FXNR165C/GAA fibroblasts. These lysosomal alterations correlated with mitochondria-lysosome membrane contact sites (MCSs) defects in GDAP1W67L/W67L exclusively. The study of mitochondrial contacts in all samples further revealed a significant decrease in MFN2R104W/+ fibroblasts. GDAP1 and MFN2 are outer mitochondrial membrane (OMM) proteins and both are related to Charcot-Marie Tooth neuropathy. Here we identified their constitutive interaction as well as MFN2 interaction with LAMP-1. Therefore MFN2 is a new mitochondria-lysosome MCSs protein. Interestingly, GDAP1W67L/W67L and MFN2R104W/+ fibroblasts carry pathogenic changes that occur in their catalytic domains thus suggesting a functional role of GDAP1 and MFN2 in mitochondria–lysosome MCSs. Finally, we observed starvation-induced autophagy alterations in DRP1K75E/+, GDAP1W67L/W67L, OPA1F570L/+, MFN2R104W/+, and CHKBQ198*/Q198* fibroblasts. These genes are related to mitochondrial membrane structure or lipid composition, which would associate the OMM with starvation-induced autophagy. In conclusion, the study of mitochondrial dynamics and mitochondria-lysosome axis in a group of patients with different neurogenetic diseases has deciphered common and unique cellular phenotypes of degrading and non-degrading pathways that shed light on pathophysiological events, new biomarkers and pharmacological targets for these disorders.
Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria make physical contacts with almost every other membrane in the cell thus impacting cellular functions. Mutations in mitochondrial dynamics genes are known to cause neurogenetic diseases. To better understand the consequences on the cellular phenotype and pathophysiology of neurogenetic diseases associated with defective mitochondrial dynamics, we have compared the fibroblasts phenotypes of (i) patients carrying pathogenic variants in genes involved in mitochondrial dynamics such as DRP1 (also known as DNM1L ), GDAP1 , OPA1 , and MFN2 , and (ii) patients carrying mutated genes that their dysfunction affects mitochondria or induces a mitochondrial phenotype, but that are not directly involved in mitochondrial dynamic network, such as FXN (encoding frataxin, located in the mitochondrial matrix), MED13 (hyperfission phenotype), and CHKB (enlarged mitochondria phenotype). We identified mitochondrial network alterations in all patients’ fibroblasts except for CHKB Q198*/Q198* . Functionally, all fibroblasts showed mitochondrial oxidative stress, without membrane potential abnormalities. The lysosomal area and distribution were abnormal in GDAP1 W67L/W67L , DRP1 K75E/+ , OPA1 F570L/+ , and FXN R165C/GAA fibroblasts. These lysosomal alterations correlated with mitochondria-lysosome membrane contact sites (MCSs) defects in GDAP1 W67L/W67L exclusively. The study of mitochondrial contacts in all samples further revealed a significant decrease in MFN2 R104W/+ fibroblasts. GDAP1 and MFN2 are outer mitochondrial membrane (OMM) proteins and both are related to Charcot-Marie Tooth neuropathy. Here we identified their constitutive interaction as well as MFN2 interaction with LAMP-1. Therefore MFN2 is a new mitochondria-lysosome MCSs protein. Interestingly, GDAP1 W67L/W67L and MFN2 R104W/+ fibroblasts carry pathogenic changes that occur in their catalytic domains thus suggesting a functional role of GDAP1 and MFN2 in mitochondria–lysosome MCSs. Finally, we observed starvation-induced autophagy alterations in DRP1 K75E/+ , GDAP1 W67L/W67L , OPA1 F570L/+ , MFN2 R104W/+ , and CHKB Q198*/Q198* fibroblasts. These genes are related to mitochondrial membrane structure or lipid composition, which would associate the OMM with starvation-induced autophagy. In conclusion, the study of mitochondrial dynamics and mitochondria-lysosome axis in a group of patients with different neurogenetic diseases has deciphered common and unique cellular phenotypes of degrading and non-degrading pathways that shed light on pathophysiological events, new biomarkers and pharmacological targets for these disorders.
Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria make physical contacts with almost every other membrane in the cell thus impacting cellular functions. Mutations in mitochondrial dynamics genes are known to cause neurogenetic diseases. To better understand the consequences on the cellular phenotype and pathophysiology of neurogenetic diseases associated with defective mitochondrial dynamics, we have compared the fibroblasts phenotypes of (i) patients carrying pathogenic variants in genes involved in mitochondrial dynamics such as DRP1 (also known as DNM1L), GDAP1, OPA1 and MFN2, and (ii) patients carrying mutated genes that their dysfunction affects mitochondria or induces a mitochondrial phenotype, but that are not directly involved in mitochondrial dynamic network, such as FXN (encoding frataxin, located in the mitochondrial matrix), MED13 (hyperfision phenotype) and CHKB (enlarged mitochondria phenotype). We identified mitochondrial network alterations in all patients’ fibroblasts except for CHKBQ198*/Q198*. Functionally, all fibroblasts showed mitochondrial oxidative stress, without membrane potential abnormalities. The lysosomal area and distribution were abnormal in GDAP1W67L/W67L, DRP1K75E/+, OPA1F570L/+ and FXNR165C/GAA fibroblasts. These lysosomal alterations correlated with mitochondria-lysosome membrane contact sites (MCSs) defects in GDAP1W67L/W67L exclusively. The study of mitochondrial contacts in all samples further revealed a significant decrease in MFN2R104W/+ fibroblasts. GDAP1 and MFN2 are outer mitochondrial membrane (OMM) proteins and both are related to Charcot-Marie Tooth neuropathy. Here we identified their constitutive interaction as well as MFN2 interaction with LAMP-1. Therefore MFN2 is a new mitochondria-lysosome MCSs protein. Interestingly, GDAP1W67L/W67L and MFN2R104W/+ fibroblasts carry pathogenic changes that occur in their catalytic domains thus suggesting a functional role of GDAP1 and MFN2 in mitochondria–lysosome MCSs. Finally, we observed starvation-induced autophagy alterations in DRP1K75E/+, GDAP1W67L/W67L, OPA1F570L/+, MFN2R104W/+ and CHKBQ198*/Q198* fibroblasts. These genes are related to mitochondrial membrane structure or lipid composition, which would associate the OMM with starvation-induced autophagy. In conclusion, the study of mitochondrial dynamics and mitochondria-lysosome axis in a group of patients with different neurogenetic diseases has deciphered common and unique cellular phenotypes of degrading and non-degrading pathways that shed light on pathophysiological events, new biomarkers and pharmacological targets for these disorders.
Author Carrera-García, Laura
Nascimento, Andrés
Palau, Francesc
Altisent-Huguet, Anna
Natera-de Benito, Daniel
Cantarero, Lara
Hoenicka, Janet
Pijuan, Jordi
Díaz-Osorio, Yaiza
Ortez, Carlos
Expósito-Escudero, Jessica
Altimir, Arola
AuthorAffiliation 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Barcelona , Spain
4 Department of Genetic Medicine – IPER, Hospital Sant Joan de Déu , Barcelona , Spain
6 Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona , Barcelona , Spain
5 Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic , Barcelona , Spain
3 Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu , Barcelona , Spain
1 Laboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu , Barcelona , Spain
AuthorAffiliation_xml – name: 4 Department of Genetic Medicine – IPER, Hospital Sant Joan de Déu , Barcelona , Spain
– name: 3 Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu , Barcelona , Spain
– name: 6 Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona , Barcelona , Spain
– name: 1 Laboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu , Barcelona , Spain
– name: 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Barcelona , Spain
– name: 5 Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic , Barcelona , Spain
Author_xml – sequence: 1
  givenname: Jordi
  surname: Pijuan
  fullname: Pijuan, Jordi
  organization: Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
– sequence: 2
  givenname: Lara
  surname: Cantarero
  fullname: Cantarero, Lara
  organization: Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
– sequence: 3
  givenname: Daniel
  surname: Natera-de Benito
  fullname: Natera-de Benito, Daniel
  organization: Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
– sequence: 4
  givenname: Arola
  surname: Altimir
  fullname: Altimir, Arola
  organization: Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
– sequence: 5
  givenname: Anna
  surname: Altisent-Huguet
  fullname: Altisent-Huguet, Anna
  organization: Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
– sequence: 6
  givenname: Yaiza
  surname: Díaz-Osorio
  fullname: Díaz-Osorio, Yaiza
  organization: Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
– sequence: 7
  givenname: Laura
  surname: Carrera-García
  fullname: Carrera-García, Laura
  organization: Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
– sequence: 8
  givenname: Jessica
  surname: Expósito-Escudero
  fullname: Expósito-Escudero, Jessica
  organization: Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
– sequence: 9
  givenname: Carlos
  surname: Ortez
  fullname: Ortez, Carlos
  organization: Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
– sequence: 10
  givenname: Andrés
  surname: Nascimento
  fullname: Nascimento, Andrés
  organization: Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
– sequence: 11
  givenname: Janet
  surname: Hoenicka
  fullname: Hoenicka, Janet
  organization: Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
– sequence: 12
  givenname: Francesc
  surname: Palau
  fullname: Palau, Francesc
  organization: Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35177962$$D View this record in MEDLINE/PubMed
BookMark eNpdkVuLFDEQhRtZcS_6A3yRBl986THXTvpFkFkvC6OCKPgWqpPq2QzdyZp0C_Pvze6sw64QSEid-nJS57w6CTFgVb2kZMW57t4OwYe8YoSxldJCa_KkOqNtyxoh-a-T41no0-o85x0hLdOCPatOuaRKdS07q75_8XO01zG45GGsL_cBJm9zDcHVD0vNZp9jjhPW6xhmsHOufai_4pLiFgPO3taXPiNkzM-rpwOMGV_c7xfVz48ffqw_N5tvn67W7zeNFR2fG2RWKSGQ98U7MgAJtCznbNc6ENjT3vZqcN3AcbCKECIHojWTBJ21zPGL6urAdRF25ib5CdLeRPDm7iKmrYFUjI1oOBCuZOuUaGkhIyBl5Y0BlAQooyysdwfWzdJPhY9hTjA-gj6uBH9ttvGP0VoIqWQBvLkHpPh7wTybyWeL4wgB45INaznpaKdaUqSv_5Pu4pJCGVVRMUGYZB0tKnpQ2RRzTjgczVBibtM3d-mb2_TNIf3S8-rhL44d_-LmfwEN87BL
CitedBy_id crossref_primary_10_1039_D2CS00562J
crossref_primary_10_1073_pnas_2313010120
crossref_primary_10_1002_2211_5463_13605
crossref_primary_10_1007_s11357_022_00620_5
crossref_primary_10_1016_j_bpc_2023_107113
crossref_primary_10_1242_bio_059707
crossref_primary_10_1186_s43141_023_00568_9
Cites_doi 10.1210/me.2016-1008
10.1093/nar/gky1016
10.1083/jcb.200507087
10.1038/nm.3232
10.1101/gad.346759.120
10.1093/hmg/ddz211
10.1038/s41556-018-0098-z
10.1146/annurev-pathmechdis-012419-032711
10.1016/j.bbabio.2018.01.005
10.1016/S0076-6879(08)03612-4
10.1083/jcb.201007152
10.1093/bioinformatics/btu703
10.3389/fnins.2021.654785
10.1016/j.cell.2010.04.009
10.1093/hmg/ddaa243
10.1042/NS20200093
10.1016/j.nmd.2020.10.003
10.1002/humu.23033
10.1016/j.bbamcr.2020.118800
10.1152/ajpcell.00195.2006
10.1074/jbc.M808515200
10.1007/s11033-014-3584-9
10.1016/j.biocel.2021.105951
10.3390/cells7120274
10.1074/jbc.M115.695825
10.1007/s00401-015-1528-7
10.1016/j.devcel.2013.12.009
10.3390/ijms22094617
10.1016/j.cell.2006.06.010
10.1091/mbc.E14-05-0953
10.1038/s41418-020-00705-8
10.1073/pnas.0407043101
10.1007/978-0-85729-701-3_8
10.1016/j.tem.2015.12.001
10.1093/bioinformatics/btv195
10.1016/j.expneurol.2019.113069
10.1038/nature11910
10.3390/cells8101289
10.3791/3779
10.1038/nmeth.2890
10.1111/jns.12088
10.1136/jmg.2007.054270
10.1038/s41580-020-0210-7
10.1016/j.cmet.2015.06.006
10.1002/humu.22225
10.1056/NEJMoa064436
10.3389/fncel.2014.00124
10.1038/nature25486
10.1111/ene.13250
10.1016/j.tcb.2019.02.009
10.1016/j.ajhg.2011.05.010
10.1016/j.ab.2017.07.009
ContentType Journal Article
Copyright Copyright © 2022 Pijuan, Cantarero, Natera-de Benito, Altimir, Altisent-Huguet, Díaz-Osorio, Carrera-García, Expósito-Escudero, Ortez, Nascimento, Hoenicka and Palau.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Pijuan, Cantarero, Natera-de Benito, Altimir, Altisent-Huguet, Díaz-Osorio, Carrera-García, Expósito-Escudero, Ortez, Nascimento, Hoenicka and Palau. 2022 Pijuan, Cantarero, Natera-de Benito, Altimir, Altisent-Huguet, Díaz-Osorio, Carrera-García, Expósito-Escudero, Ortez, Nascimento, Hoenicka and Palau
Copyright_xml – notice: Copyright © 2022 Pijuan, Cantarero, Natera-de Benito, Altimir, Altisent-Huguet, Díaz-Osorio, Carrera-García, Expósito-Escudero, Ortez, Nascimento, Hoenicka and Palau.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Pijuan, Cantarero, Natera-de Benito, Altimir, Altisent-Huguet, Díaz-Osorio, Carrera-García, Expósito-Escudero, Ortez, Nascimento, Hoenicka and Palau. 2022 Pijuan, Cantarero, Natera-de Benito, Altimir, Altisent-Huguet, Díaz-Osorio, Carrera-García, Expósito-Escudero, Ortez, Nascimento, Hoenicka and Palau
DBID NPM
AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2022.784880
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
EndPage 784880
ExternalDocumentID oai_doaj_org_article_3a03756d74614ebeae12da4fa75aa338
10_3389_fnins_2022_784880
35177962
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: ;
  grantid: SAF2015-66625-R
– fundername: ;
  grantid: SLT002/16/00174; 2015 FEDER/S21; SLT002/16/00306; 2017/SGR1308
– fundername: ;
  grantid: CIBERER-ACCI 2019-16
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEA
IHR
ISR
KQ8
LK8
M2P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
AAYXX
CITATION
3V.
7XB
8FK
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c493t-e2c7744e3b784e2aa5a15a1ddc96da4eb1bcb7fd9f3efc70005f088250edcc2d3
IEDL.DBID RPM
ISSN 1662-4548
1662-453X
IngestDate Tue Oct 22 15:11:15 EDT 2024
Tue Sep 17 20:39:43 EDT 2024
Fri Oct 25 07:58:56 EDT 2024
Thu Oct 10 19:18:40 EDT 2024
Thu Sep 26 19:08:41 EDT 2024
Sat Sep 28 08:26:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords membrane contact sites (MCSs)
lysosome
mitochondria
neurogenetic diseases
mitochondrial dynamics
Language English
License Copyright © 2022 Pijuan, Cantarero, Natera-de Benito, Altimir, Altisent-Huguet, Díaz-Osorio, Carrera-García, Expósito-Escudero, Ortez, Nascimento, Hoenicka and Palau.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-e2c7744e3b784e2aa5a15a1ddc96da4eb1bcb7fd9f3efc70005f088250edcc2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors share senior authorship
This article was submitted to Neurogenomics, a section of the journal Frontiers in Neuroscience
Edited by: Aurora Gomez-Duran, Margarita Salas Center for Biological Research, Spanish National Research Council (CSIC), Spain
Reviewed by: Dario Ronchi, University of Milan, Italy; Marc Germain, Université du Québec à Trois-Rivières, Canada
These authors have contributed equally to this work and share first authorship
Present address: Arola Altimir, HIPRA Laboratories S.A., Girona, Spain Anna Altisent-Huguet, Reference Laboratory, Barcelona, Spain
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844575/
PMID 35177962
PQID 2624025291
PQPubID 4424402
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3a03756d74614ebeae12da4fa75aa338
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844575
proquest_miscellaneous_2630919760
proquest_journals_2624025291
crossref_primary_10_3389_fnins_2022_784880
pubmed_primary_35177962
PublicationCentury 2000
PublicationDate 2022-01-31
PublicationDateYYYYMMDD 2022-01-31
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2022
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Waterham (B45) 2007; 356
Wilson (B47) 2021; 28
Chan (B8) 2006; 125
Longo (B27) 2020; 29
Nie (B32) 2014; 41
Quang (B38) 2015; 31
Wai (B44) 2016; 27
Hailey (B19) 2010; 141
Petkovic (B37) 2021; 35
Dagda (B13) 2009; 284
Wolf (B48) 2019; 8
Hamasaki (B20) 2013; 495
Fan (B16) 2016; 30
Kyriakoudi (B25) 2021; 22
Zuber (B53) 2002; 65
Chan (B9) 2020; 15
Yang (B50) 2021; 15
Benard (B3) 2006; 291
Kostera-Pruszczyk (B23) 2014; 19
Lynch (B28) 2021; 5
Vangipuram (B43) 2013; 77
Yu-Wai-Man (B51) 2009; 46
Bjorkoy (B4) 2009; 452
Otera (B36) 2010; 191
Kausar (B21) 2018; 7
Bolinches-Amorós (B5) 2014; 8
Cooper (B12) 2014; 28
Cantarero (B6) 2020; 29
Nasca (B30) 2016; 37
Del Dotto (B14) 2018; 1859
Anghelescu (B1) 2017; 24
Willems (B46) 2015; 22
Zorova (B52) 2018; 552
Schwarz (B40) 2014; 11
Demers-Lamarche (B15) 2016; 291
Giacomello (B18) 2020; 21
Shihab (B41) 2013; 34
Choi (B10) 2015; 31
Cipolat (B11) 2004; 101
Barreda Fierro (B2) 2020; 30
Niemann (B33) 2005; 170
Wong (B49) 2018; 554
Krols (B24) 2016; 131
Rentzsch (B39) 2019; 47
Oliveira (B35) 2012
Mitsuhashi (B29) 2011; 88
Khakhina (B22) 2014; 25
Lackner (B26) 2019; 29
Cassereau (B7) 2020; 323
Navaratnarajah (B31) 2021; 134
Nixon (B34) 2013; 19
Silva (B42) 2020; 1867
Formosa (B17) 2018; 20
References_xml – volume: 30
  start-page: 763
  year: 2016
  ident: B16
  article-title: ACBD2/ECI2-Mediated Peroxisome-Mitochondria interactions in leydig cell steroid biosynthesis.
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2016-1008
  contributor:
    fullname: Fan
– volume: 47
  start-page: D886
  year: 2019
  ident: B39
  article-title: CADD: predicting the deleteriousness of variants throughout the human genome.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1016
  contributor:
    fullname: Rentzsch
– volume: 170
  start-page: 1067
  year: 2005
  ident: B33
  article-title: Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200507087
  contributor:
    fullname: Niemann
– volume: 19
  start-page: 983
  year: 2013
  ident: B34
  article-title: The role of autophagy in neurodegenerative disease.
  publication-title: Nat. Med.
  doi: 10.1038/nm.3232
  contributor:
    fullname: Nixon
– volume: 35
  start-page: 449
  year: 2021
  ident: B37
  article-title: Interorganelle communication, aging, and neurodegeneration.
  publication-title: Genes Dev.
  doi: 10.1101/gad.346759.120
  contributor:
    fullname: Petkovic
– volume: 29
  start-page: 177
  year: 2020
  ident: B27
  article-title: Impaired turnover of hyperfused mitochondria in severe axonal neuropathy due to a novel DRP1 mutation.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddz211
  contributor:
    fullname: Longo
– volume: 20
  start-page: 511
  year: 2018
  ident: B17
  article-title: Mitochondrial OXPHOS complex assembly lines.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0098-z
  contributor:
    fullname: Formosa
– volume: 15
  start-page: 235
  year: 2020
  ident: B9
  article-title: Mitochondrial dynamics and its involvement in disease.
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathmechdis-012419-032711
  contributor:
    fullname: Chan
– volume: 1859
  start-page: 263
  year: 2018
  ident: B14
  article-title: Eight human OPA1 isoforms, long and short: what are they for?
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2018.01.005
  contributor:
    fullname: Del Dotto
– volume: 452
  start-page: 181
  year: 2009
  ident: B4
  article-title: Monitoring autophagic degradation of p62/SQSTM1.
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(08)03612-4
  contributor:
    fullname: Bjorkoy
– volume: 191
  start-page: 1141
  year: 2010
  ident: B36
  article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007152
  contributor:
    fullname: Otera
– volume: 31
  start-page: 761
  year: 2015
  ident: B38
  article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu703
  contributor:
    fullname: Quang
– volume: 15
  year: 2021
  ident: B50
  article-title: Mitochondrial dynamics: a key role in neurodegeneration and a potential target for neurodegenerative disease.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.654785
  contributor:
    fullname: Yang
– volume: 141
  start-page: 656
  year: 2010
  ident: B19
  article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation.
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.009
  contributor:
    fullname: Hailey
– volume: 29
  start-page: 3589
  year: 2020
  ident: B6
  article-title: Mitochondria-lysosome membrane contacts are defective in GDAP1-related Charcot-Marie-Tooth disease.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddaa243
  contributor:
    fullname: Cantarero
– volume: 5
  year: 2021
  ident: B28
  article-title: Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions.
  publication-title: Neuronal Signal.
  doi: 10.1042/NS20200093
  contributor:
    fullname: Lynch
– volume: 30
  start-page: 986
  year: 2020
  ident: B2
  article-title: Clinical and molecular evidence of possible digenic inheritance for MFN2/GDAP1 genes in Charcot-Marie-Tooth disease.
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/j.nmd.2020.10.003
  contributor:
    fullname: Barreda Fierro
– volume: 37
  start-page: 898
  year: 2016
  ident: B30
  article-title: Biallelic Mutations in DNM1L are associated with a slowly progressive infantile encephalopathy.
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.23033
  contributor:
    fullname: Nasca
– volume: 1867
  year: 2020
  ident: B42
  article-title: Maintaining social contacts: the physiological relevance of organelle interactions.
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2020.118800
  contributor:
    fullname: Silva
– volume: 291
  start-page: C1172
  year: 2006
  ident: B3
  article-title: Physiological diversity of mitochondrial oxidative phosphorylation.
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00195.2006
  contributor:
    fullname: Benard
– volume: 65
  start-page: 1155
  year: 2002
  ident: B53
  article-title: Punch biopsy of the skin.
  publication-title: Am. Fam. Physician
  contributor:
    fullname: Zuber
– volume: 284
  start-page: 13843
  year: 2009
  ident: B13
  article-title: Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808515200
  contributor:
    fullname: Dagda
– volume: 41
  start-page: 6975
  year: 2014
  ident: B32
  article-title: Mitofusin 2 deficiency leads to oxidative stress that contributes to insulin resistance in rat skeletal muscle cells.
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-014-3584-9
  contributor:
    fullname: Nie
– volume: 134
  year: 2021
  ident: B31
  article-title: The relevance of mitochondrial morphology for human disease.
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2021.105951
  contributor:
    fullname: Navaratnarajah
– volume: 7
  year: 2018
  ident: B21
  article-title: The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases.
  publication-title: Cells
  doi: 10.3390/cells7120274
  contributor:
    fullname: Kausar
– volume: 291
  start-page: 10263
  year: 2016
  ident: B15
  article-title: Loss of mitochondrial function impairs lysosomes.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.695825
  contributor:
    fullname: Demers-Lamarche
– volume: 131
  start-page: 505
  year: 2016
  ident: B24
  article-title: Mitochondria-associated membranes as hubs for neurodegeneration.
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-015-1528-7
  contributor:
    fullname: Krols
– volume: 28
  start-page: 161
  year: 2014
  ident: B12
  article-title: Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2013.12.009
  contributor:
    fullname: Cooper
– volume: 22
  year: 2021
  ident: B25
  article-title: When the balance tips: dysregulation of mitochondrial dynamics as a culprit in disease.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22094617
  contributor:
    fullname: Kyriakoudi
– volume: 125
  start-page: 1241
  year: 2006
  ident: B8
  article-title: Mitochondria: dynamic organelles in disease, aging, and development.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.010
  contributor:
    fullname: Chan
– volume: 25
  start-page: 2807
  year: 2014
  ident: B22
  article-title: Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E14-05-0953
  contributor:
    fullname: Khakhina
– volume: 28
  start-page: 1804
  year: 2021
  ident: B47
  article-title: ER-mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms.
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-00705-8
  contributor:
    fullname: Wilson
– volume: 101
  start-page: 15927
  year: 2004
  ident: B11
  article-title: OPA1 requires mitofusin 1 to promote mitochondrial fusion.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0407043101
  contributor:
    fullname: Cipolat
– start-page: 127
  year: 2012
  ident: B35
  article-title: Mitochondrial membrane potential and dynamics
  publication-title: Mitochondrial Dysfunction in Neurodegenerative Disorders
  doi: 10.1007/978-0-85729-701-3_8
  contributor:
    fullname: Oliveira
– volume: 27
  start-page: 105
  year: 2016
  ident: B44
  article-title: Mitochondrial Dynamics and Metabolic Regulation.
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2015.12.001
  contributor:
    fullname: Wai
– volume: 31
  start-page: 2745
  year: 2015
  ident: B10
  article-title: PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv195
  contributor:
    fullname: Choi
– volume: 323
  year: 2020
  ident: B7
  article-title: Oxidative stress contributes differentially to the pathophysiology of Charcot-Marie-Tooth disease type 2K.
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2019.113069
  contributor:
    fullname: Cassereau
– volume: 495
  start-page: 389
  year: 2013
  ident: B20
  article-title: Autophagosomes form at ER-mitochondria contact sites.
  publication-title: Nature
  doi: 10.1038/nature11910
  contributor:
    fullname: Hamasaki
– volume: 8
  year: 2019
  ident: B48
  article-title: The Charcot-Marie Tooth Disease Mutation R94Q in MFN2 Decreases ATP production but increases mitochondrial respiration under conditions of mild oxidative stress.
  publication-title: Cells
  doi: 10.3390/cells8101289
  contributor:
    fullname: Wolf
– volume: 77
  year: 2013
  ident: B43
  article-title: Skin punch biopsy explant culture for derivation of primary human fibroblasts.
  publication-title: J. Vis. Exp.
  doi: 10.3791/3779
  contributor:
    fullname: Vangipuram
– volume: 11
  start-page: 361
  year: 2014
  ident: B40
  article-title: MutationTaster2: mutation prediction for the deep-sequencing age.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2890
  contributor:
    fullname: Schwarz
– volume: 19
  start-page: 242
  year: 2014
  ident: B23
  article-title: Exome sequencing reveals mutations in MFN2 and GDAP1 in severe Charcot-Marie-Tooth disease.
  publication-title: J. Peripher. Nerv. Syst.
  doi: 10.1111/jns.12088
  contributor:
    fullname: Kostera-Pruszczyk
– volume: 46
  start-page: 145
  year: 2009
  ident: B51
  article-title: Inherited mitochondrial optic neuropathies.
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2007.054270
  contributor:
    fullname: Yu-Wai-Man
– volume: 21
  start-page: 204
  year: 2020
  ident: B18
  article-title: The cell biology of mitochondrial membrane dynamics.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0210-7
  contributor:
    fullname: Giacomello
– volume: 22
  start-page: 207
  year: 2015
  ident: B46
  article-title: Redox homeostasis and mitochondrial dynamics.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.06.006
  contributor:
    fullname: Willems
– volume: 34
  start-page: 57
  year: 2013
  ident: B41
  article-title: Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models.
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22225
  contributor:
    fullname: Shihab
– volume: 356
  start-page: 1736
  year: 2007
  ident: B45
  article-title: A lethal defect of mitochondrial and peroxisomal fission.
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa064436
  contributor:
    fullname: Waterham
– volume: 8
  year: 2014
  ident: B5
  article-title: Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism.
  publication-title: Front. Cell Neurosci.
  doi: 10.3389/fncel.2014.00124
  contributor:
    fullname: Bolinches-Amorós
– volume: 554
  start-page: 382
  year: 2018
  ident: B49
  article-title: Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis.
  publication-title: Nature
  doi: 10.1038/nature25486
  contributor:
    fullname: Wong
– volume: 24
  start-page: e15
  year: 2017
  ident: B1
  article-title: Targeted exomes reveal simultaneous MFN2 and GDAP1 mutations in a severe Charcot-Marie-Tooth disease type 2 phenotype.
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.13250
  contributor:
    fullname: Anghelescu
– volume: 29
  start-page: 580
  year: 2019
  ident: B26
  article-title: The expanding and unexpected functions of mitochondria contact sites.
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.02.009
  contributor:
    fullname: Lackner
– volume: 88
  start-page: 845
  year: 2011
  ident: B29
  article-title: A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis.
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.05.010
  contributor:
    fullname: Mitsuhashi
– volume: 552
  start-page: 50
  year: 2018
  ident: B52
  article-title: Mitochondrial membrane potential.
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2017.07.009
  contributor:
    fullname: Zorova
SSID ssj0062842
Score 2.386752
Snippet Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 784880
SubjectTerms Antibodies
Autophagy
Fibroblasts
Flow cytometry
Frataxin
Homeostasis
LAMP-1 protein
Lipid composition
lysosome
membrane contact sites (MCSs)
Membrane potential
Membrane structure
Membranes
Metabolism
Mitochondria
mitochondrial dynamics
neurogenetic diseases
Neuropathy
Neuroscience
Oxidative stress
Pathophysiology
Patients
Phenotypes
Proteins
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_SkxdR68dqlQjiQVi7-dpsjtVailgPYqG3ZTYf-A7NK-7rof-9M8l7j_dE8CLsaRNI8pvJ5JdMMsPY2y4N0Q0wtdrJ1GodQzsJEK3yRtkp9gImeo188a0_v9RfrszVTqovuhNWwwNX4I4VUJbWPliNCwm2CFHIADqBNQC4vyrWt3ObzVS1wT0aXVl9mFjFHae8yBSbW8oPdiCV3VuFSrD-vzHMPy9K7qw8Zw_ZgzVl5Ce1q4_YvZgfs8OTjNvl6zv-jpdLnOV0_JB9v8AZihYtB1Isflrzzc8ccuC7Re3Xu3k5L68jp_BU4FczX2ReInWgRtHDRn5aXTfzE3Z59vnHp_N2nTah9dqpVRulR06no5pwrFECGBD4heBdj8ihcZ78ZFNwScXkLbG2RETbdDhQL4N6yg7yMsfnjA--IwLofEiDNl4AdF4mtAMCiUowqWHvNzCONzU6xoi7CsJ8LJiPhPlYMW_YRwJ6W5ECW5cfKO5xLe7xX-Ju2NFGTON6tmEjPfmIjHSiYW-2xThPyPkBOS5vqY5CaoTkC_vxrEp12xNlhLWulw2ze_Le6-p-SV78LLG4h0FrZLwv_sfYXrL7BBcd8ChxxA5Wv27jK6Q8q-l10e7fWmEDNg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege-EFAeMjbCAjIR6QwhLbieMnlKWdWrQlqO2k7Sly_DH2QLqN7oH_nrskrVaEkPIUW8n57nz-2Xe-I-Rj5DOnMt2EQjEfCuFs2MQ6DrlJuGxcGusGbyOflen0XHy7SC6GA7dfQ1jlxiZ2htquDJ6RH7EU_QAJU_HXm9sQq0ahd3UoofGY7DHYKUQjsnc8Kb_PN7Y4BePb-TtTvBsE4Lz3a8K2TB359rrFfN2MfZEZqvHOytQl8P8X6vw7ePLBanTyjDwdYCTNe7k_J49c-4Ls5y1soX_-pp9oF9jZnZjvkzmYp6qYVuV4PstP6fiyzLFyIc3LMX3YFJ5eLqpFdTahRVUu82K5oLOSlhjrhwFuy1lBx7PFJAcL_JKcn0yWxTQcSimERii-Dh0zgPOE4w2M1TGtEx3DY61RqdUCDHZjGumt8tx5IxHJeQTfSQQDNczyV2TUrlr3htDMRAgKlbE-E4mJtY4M82AbgMncJj4gnzdsrG_6jBk17DSQ53XH8xp5Xvc8D8gxMnrbEZNddy9Wd1f1MHdqrrFQb2qlACwBSqddzIBor2WiNXw3IIcbMdXDDISfbPUlIB-2zTB30CGiW7e6xz4c4BIAMqDjdS_VLSU8iaVUKQuI3JH3Dqm7Le31jy4_d5YJASj47f_JOiBPkBF4nMPjQzJa3927dwBw1s37QYv_AIF19RE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcuGCgPIIFGQkxAEpZf2KkwNChVJViHJArNSb5fhRVqIObLYS---ZSXZXXbRHpJxiJ_K87G889gzAq0mqY1O7tlSNSKVSMZQtd7yUXkvTxoq7lm4jn3-tzqbq84W-2IN1easVA_udrh3Vk5rOfx79-b18jwb_jjxOXG_fpjzLlHlbiCNTk0LegttCoaNOJ_nUJqhQ4UwsxsDm7s-2lqYhg_8u2Pnv6ckby9HpPbi7wpHseBT8fdiL-QEcHGf0oa-W7DUbTnYOW-YH8O0czRYpzYG0jZ2MReh75nJgN5vKL8u-67uryChnlfOLns0yG9J3oJrRbUd2MsZz-ocwPf30_eNZuaqlUHrVyEUZhUegp6JskdYonNOO4xOCb6rgFM7YrW9NCk2SMXlDUC4R-tYTJNSLIB_Bfu5yfAKs9hNChY0PqVbac-cmXiScHDiil6BTAW_WbLS_xpQZFl0N4rkdeG6J53bkeQEfiNGbjpTtenjRzS_tynisdFSptwpGIZhArXORCxx0ckY7h_8t4HAtJrvWICsqChxp0fACXm6a0XgoIuJy7K6pj0S8hIgMx_F4lOpmJFJzY5pKFGC25L011O2WPPsxJOiua6UQBj_9H7Q9gzvELtr1kfwQ9hfz6_gccdCifTFo918fdgtz
  priority: 102
  providerName: Scholars Portal
Title Mitochondrial Dynamics and Mitochondria-Lysosome Contacts in Neurogenetic Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/35177962
https://www.proquest.com/docview/2624025291
https://search.proquest.com/docview/2630919760
https://pubmed.ncbi.nlm.nih.gov/PMC8844575
https://doaj.org/article/3a03756d74614ebeae12da4fa75aa338
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SFEoupW36cJsuKpQeCt5dPfw65tlQuiGEBvZmZD3aha4csptD_n1nZHvJlp4KRgfLj9FoNPpGMxoBfJr60lWlblJVCZ8q5WzacM1TaTJZNC7nuqHdyLPL_OJGfZtn8x3Ihr0wMWjfNItx-L0ch8WvGFt5uzSTIU5scjU7KUulEGZMdmEXBXQw0Tv1m6O-jS7OnLYDIR7vXJloiVUTHxaBUnQLMS5Kktx9eCozXhRVLrbmpZi-_1-Y8-_QyUdz0flzeNaDSHbUEfsCdlx4CQdHAQ3o5QP7zGJYZ1wvP4DrGY5Z1HHBkqix0-4E-hXTwbLHVen3h1W7apeOUcIqbdYrtggs5u5AGaOtjuy0c-asXsHN-dmPk4u0P0ghNaqS69QJgyhPOdlgs53QOtMcL2tNlVutUF03pim8rbx03hSE4zxB72yKDTXCytewF9rg3gIrzZQgYWWsL1VmuNZTIzxqBuS3tJlP4MvAxvq2y5dRo51B7K8j-2tif92xP4FjYvTmQUp1HW-0dz_rvsNrqemY3twWCpEEipx2XCDRXheZ1vjdBA6Hbqr78Yc_yclrlImKJ_BxU40jh9whOrj2np6RCJYQjiEdb7pe3VAySEUCxVZ_b5G6XYPCGrNz98L57r_ffA_7xCNa55H8EPbWd_fuAyKfdTOCJ8dnl1fXo7hygOXXOcdypspRHAN_ANj2CZ8
link.rule.ids 230,315,730,783,787,867,888,2109,21400,24330,27936,27937,33756,43817,53804,53806,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFAeWRUsBIiANS6MZ2XieUZrfawG6CdlOpPVmOH9BDs6VsD_x7ZpLsqosQUk6xlYxnxuPPnvEMIe9HLrFpohpfpMz5QljjN4EKfK5DHjc2ClSDt5HnZTQ9E1_Ow_PhwO3XEFa5sYmdoTYrjWfkxyxCP0DI0uDz9U8fq0ahd3UooXGf7GOqKth87Z9Mym-LjS2OwPh2_s4I7wYBOO_9mrAtS49de9livm7GPsUJqvHOytQl8P8X6vw7ePLOanT6mDwaYCTNerk_Ifds-5QcZC1soa9-0w-0C-zsTswPyALMU5VPq3K8KLIZHV-UGVYupFk5pneb_NnFslpW8wnNq7LO8npJi5KWGOuHAW51kdNxsZxkYIGfkbPTSZ1P_aGUgq9Fyte-ZRpwnrC8gbFaplSoAniM0WlklACD3egmdiZ13DodI5JzCL7DEQxUM8Ofk7121dqXhCZ6hKAw1cYlItSBUiPNHNgGYDI3ofPIxw0b5XWfMUPCTgN5LjueS-S57HnukRNk9LYjJrvuXqxuvsth7kiusFBvZGIBWAKUTtmAAdFOxaFS8F2PHG3EJIcZCD_Z6otH3m2bYe6gQ0S1dnWLfTjAJQBkQMeLXqpbSngYxHEaMY_EO_LeIXW3pb380eXnThIhAAUf_p-st-TBtJ7P5Kwov74iD5EpeLTDgyOyt765ta8B7KybN4NG_wFMQvgL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxAvCBiwwAAjIR6QQhPb-XpCWdKqgS6Z2k7aniLHH7AH0jG6B_577pK0WhFCylNsJee78_ln3_mOkPeejU0Sy8YVCbOuEEa7jS99l6uAR40JfdngbeTTMpydiy8XwcUQ__RrCKvc2sTOUOu1wjPyMQvRDxCwxB_bISziLJ9-vv7pYgUp9LQO5TTuk4NIhNwbkYOTSXm22NrlEAxx5_sM8Z4QAPXexwlbtGRs26sWc3cz9imKUaX3Vqkumf-_EOjfgZR3VqbpY_JogJQ07XXgCbln2qfkMG1hO_3jN_1AuyDP7vT8kCzAVFXZrCrzRZHOaX5ZpljFkKZlTu82ufPLZbWsTic0q8pVmq2WtChpiXF_GOy2KjKaF8tJCtb4GTmfTlbZzB3KKrhKJHzjGqYA8wnDGxirYVIG0odHa5WEWgow3o1qIqsTy41VEaI6i0A88GCgimn-nIzadWuOCI2VhwAxUdrGIlC-lJ5iFuwEMJnrwDrk45aN9XWfPaOGXQfyvO54XiPP657nDjlBRu86YuLr7sX65ls9zKOaSyzaG2oQsQ-kGml8BkRbGQVSwncdcrwVUz3MRvjJTncc8m7XDPMInSOyNetb7MMBOgE4Azpe9FLdUcIDP4qSkDkk2pP3Hqn7Le3V9y5XdxwLAYj45f_JeksegDLX86L8-oo8RJ7gKQ_3j8loc3NrXgPu2TRvBoX-AyYR_Dk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Dynamics+and+Mitochondria-Lysosome+Contacts+in+Neurogenetic+Diseases&rft.jtitle=Frontiers+in+neuroscience&rft.au=Jordi+Pijuan&rft.au=Jordi+Pijuan&rft.au=Lara+Cantarero&rft.au=Lara+Cantarero&rft.date=2022-01-31&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=16&rft_id=info:doi/10.3389%2Ffnins.2022.784880&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3a03756d74614ebeae12da4fa75aa338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-4548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-4548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-4548&client=summon