Margination of Fluorescent Polylactic Acid-Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure

The last decade has seen the emergence of vascular-targeted drug delivery systems as a promising approach for the treatment of many diseases, such as cardiovascular diseases and cancer. In this field, one of the major challenges is carrier margination propensity (i.e., particle migration from blood...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 22; no. 11; p. 1845
Main Authors Craparo, Emanuela Fabiola, D'Apolito, Rosa, Giammona, Gaetano, Cavallaro, Gennara, Tomaiuolo, Giovanna
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.10.2017
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The last decade has seen the emergence of vascular-targeted drug delivery systems as a promising approach for the treatment of many diseases, such as cardiovascular diseases and cancer. In this field, one of the major challenges is carrier margination propensity (i.e., particle migration from blood flow to vessel walls); indeed, binding of these particles to targeted cells and tissues is only possible if there is direct carrier-wall interaction. Here, a microfluidic system mimicking the hydrodynamic conditions of human microcirculation in vitro is used to investigate the effect of red blood cells (RBCs) on a carrier margination in relation to RBC concentration (hematocrit) and pressure drop. As model drug carriers, fluorescent polymeric nanoparticles (FNPs) were chosen, which were obtained by using as starting material a pegylated polylactic acid-polyaspartamide copolymer. The latter was synthesized by derivatization of α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) with Rhodamine (RhB), polylactic acid (PLA) and then poly(ethyleneglycol) (PEG) chains. It was found that the carrier concentration near the wall increases with increasing pressure drop, independently of RBC concentration, and that the tendency for FNP margination decreases with increasing hematocrit. This work highlights the importance of taking into account RBC-drug carrier interactions and physiological conditions in microcirculation when planning a drug delivery strategy based on systemically administered carriers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The two authors contributed equally to this work.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules22111845