Mechanical properties and microstructural fracture behaviors of dry-spun SiC fibers
Research and development of SiC/SiC composite materials as structural members of aerospace engines is progressing. In order to manufacture SiC/SiC composites with excellent high-temperature characteristics, the SiC fibers which have high mechanical properties at high temperature are necessary; thus,...
Saved in:
Published in | Mechanical Engineering Journal Vol. 6; no. 3; p. 18-00543 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Mechanical Engineers
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Research and development of SiC/SiC composite materials as structural members of aerospace engines is progressing. In order to manufacture SiC/SiC composites with excellent high-temperature characteristics, the SiC fibers which have high mechanical properties at high temperature are necessary; thus, further development of SiC fibers is considered a critical issue. In addition, the development of low-cost SiC fibers is necessary for the practical application of SiC/SiC composites. Here, the low-cost SiC fibers can be fabricated by dry spinning method. In the dry-spinning method, the raw material, Polycarbosilane (PCS) is dissolved in an organic solvent and the solution is spun at room temperature. As high-molecular-weight Polycarbosilane is prepared in advance, the infusible process conventionally required in the melt-spinning method is not required. In this study, to evaluate the differences among dry-spun SiC fibers fabricated under various conditions, monofilament tensile tests were conducted. Examination of the fracture surface and elemental analysis of arbitrary cross-sections were then performed to investigate the effects of the fabrication conditions. The tensile strength results indicated that defects were suppressed by excluding low-molecular-weight components and that heat treatment between 1300°C and 1500°C resulted in the maximum strength. Weibull analysis revealed that the dry-spun fibers exhibited lower tensile strength but smaller variation of fiber strength than that of the melt-spun fiber because the dry-spun fibers were more homogeneous. However, evaluation of the crystallinity indicated that the interference pattern derived from the crystal was unclear in the dry-spun fibers but clear in the melt-spun fiber. Therefore, it was suggested that the dry-spun fibers exhibited lower crystallinity than the melt-spun fiber. In addition, the dry-spun and melt-spun fibers exhibited similar C/Si ratios, whereas a large amount of oxygen was detected on the surface of the dry-spun fiber relative to that on the surface of the melt-spun fiber. Further improvement of the mechanical properties is expected upon increasing the molecular weight of the raw material and improving the microstructure. |
---|---|
ISSN: | 2187-9745 2187-9745 |
DOI: | 10.1299/mej.18-00543 |