Perventricular double-device closure of wide-spaced multi-hole perimembranous ventricular septal defect

Device closure of a wide-spaced multi-hole PmVSD is difficult to succeed in percutaneous approach. This study is to evaluate the feasibility, safety and efficacy of perventricular device closure of wide-spaced multi-hole PmVSD using a double-device implanting technique. Sixteen patients with wide-sp...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiothoracic surgery Vol. 12; no. 1; p. 24
Main Authors Liang, Fei, Hongxin, Li, Zhang, Hai-Zhou, Wenbin, Guo, Zou, Cheng-Wei, Farhaj, Zeeshan
Format Journal Article
LanguageEnglish
Published England BioMed Central 17.04.2017
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Device closure of a wide-spaced multi-hole PmVSD is difficult to succeed in percutaneous approach. This study is to evaluate the feasibility, safety and efficacy of perventricular device closure of wide-spaced multi-hole PmVSD using a double-device implanting technique. Sixteen patients with wide-spaced multi-hole PmVSD underwent perventricular closure with two devices through an inferior median sternotomy approach under transesophageal echocardiographic guidance. The largest hole and its adjacent small holes were occluded with an optimal-sized device. The far-away residual hole was occluded with the other device using a probe-assisted delivery system. All patients were followed up for a period of 1 to 4 years to determine the residual shunt, atrioventricular block and the adjacent valvular function. The number of the holes of the PmVSD was 2 to 4. The maximum distance between the holes was 5.0 to 10.0 mm (median, 6.4 mm). The diameter of the largest hole was 2.5 to 7.0 mm (median, 3.6 mm). The success rate of double-device closure was 100%. Immediate residual shunts were found in 6 patients (38%), and incomplete right bundle branch block at discharge occurred in 3 cases (19%). Both complications decreased to 6% at 1-year follow-up. Neither of them had a severe device-related complication. Perventricular closure of a wide-spaced multi-hole PmVSD using a double-device implanting technique is feasible, safe, and efficacious. In multi-hole PmVSDs with the distance between the holes of more than 5 mm, double-device implantation may achieve a complete occlusion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1749-8090
1749-8090
DOI:10.1186/s13019-017-0585-5