Stochastic MV-PURE Estimator- Robust Reduced-Rank Estimator for Stochastic Linear Model

This paper proposes a novel linear estimator named stochastic MV-PURE estimator, developed for the stochastic linear model, and designed to provide improved performance over the linear minimum mean square error (MMSE) Wiener estimator in cases prevailing in practical, real-world settings, where at l...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 57; no. 4; pp. 1293 - 1303
Main Authors Piotrowski, T., Cavalcante, R., Yamada, I.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2008.2011839

Cover

Loading…
More Information
Summary:This paper proposes a novel linear estimator named stochastic MV-PURE estimator, developed for the stochastic linear model, and designed to provide improved performance over the linear minimum mean square error (MMSE) Wiener estimator in cases prevailing in practical, real-world settings, where at least some of the second-order statistics of the random vectors under consideration are only imperfectly known. The proposed estimator shares its main mathematical idea and terminology with the recently introduced minimum-variance pseudo-unbiased reduced-rank estimator (MV-PURE), developed for the linear regression model. The proposed stochastic MV-PURE estimator minimizes the mean square error (MSE) of its estimates subject to rank constraint and inducing minimum distortion to the target random vector. Therefore, the stochastic MV-PURE combines the techniques of the reduced rank Wiener filter (named in this paper RR-MMSE) and the distortionless-constrained estimator (named in this paper C-MMSE), in order to achieve greater robustness against noise or model errors than RR-MMSE and C-MMSE. Furthermore, to ensure that the stochastic MV-PURE estimator combines the reduced-rank and minimum-distortion approaches in the MSE-optimal way, we propose a rank selection criterion which minimizes the MSE of the estimates obtained by the stochastic MV-PURE. As a numerical example, we employ the stochastic MV-PURE, RR-MMSE, C-MMSE, and MMSE estimators as linear receivers in a MIMO wireless communication system. This example is chosen as a typical signal processing scenario, where the statistical information on the data, on which the estimates are built, is only imperfectly known. We verify that the stochastic MV-PURE achieves the lowest MSE and symbol error rate (SER) in such settings by employing the proposed rank selection criterion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2008.2011839