Aluminum induces lipid peroxidation and aggregation of human blood platelets

Aluminum (Al3+) intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. F...

Full description

Saved in:
Bibliographic Details
Published inBrazilian journal of medical and biological research Vol. 30; no. 5; pp. 599 - 604
Main Authors Neiva, T J, Fries, D M, Monteiro, H P, D'Amico, E A, Chamone, D A
Format Journal Article
LanguageEnglish
Published Brazil Associação Brasileira de Divulgação Científica 01.05.1997
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aluminum (Al3+) intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al(3+) -induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL) of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 microM) stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA) (100 microM) and n-propyl gallate (NPG) (100 microM), inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA) (100 microM), an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0100-879X
1414-431X
0100-879X
1414-431X
DOI:10.1590/S0100-879X1997000500005