Representing vaccine misinformation using ontologies

In this paper, we discuss the design and development of a formal ontology to describe misinformation about vaccines. Vaccine misinformation is one of the drivers leading to vaccine hesitancy in patients. While there are various levels of vaccine hesitancy to combat and specific interventions to addr...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical semantics Vol. 9; no. 1; pp. 22 - 13
Main Authors Amith, Muhammad, Tao, Cui
Format Journal Article
LanguageEnglish
Published England BioMed Central 31.08.2018
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we discuss the design and development of a formal ontology to describe misinformation about vaccines. Vaccine misinformation is one of the drivers leading to vaccine hesitancy in patients. While there are various levels of vaccine hesitancy to combat and specific interventions to address those levels, it is important to have tools that help researchers understand this problem. With an ontology, not only can we collect and analyze varied misunderstandings about vaccines, but we can also develop tools that can provide informatics solutions. We developed the Vaccine Misinformation Ontology (VAXMO) that extends the Misinformation Ontology and links to the nanopublication Resource Description Framework (RDF) model for false assertions of vaccines. Preliminary assessment using semiotic evaluation metrics indicated adequate quality for our ontology. We outlined and demonstrated proposed uses of the ontology to detect and understand anti-vaccine information. We surmised that VAXMO and its proposed use cases can support tools and technology that can pave the way for vaccine misinformation detection and analysis. Using an ontology, we can formally structure knowledge for machines and software to better understand the vaccine misinformation domain.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1480
2041-1480
DOI:10.1186/s13326-018-0190-0