A Fast and Selective Approach for Profiling Vicinal Diols Using Liquid Chromatography-Post Column Derivatization-Double Precursor Ion Scanning Mass Spectrometry
Vicinal diols are important signaling metabolites of various inflammatory diseases, and some of them are potential biomarkers for some diseases. Utilizing the rapid reaction between diol and 6-bromo-3-pyridinylboronic acid (BPBA), a selective and sensitive approach was established to profile these v...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 27; no. 1; p. 283 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
03.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Vicinal diols are important signaling metabolites of various inflammatory diseases, and some of them are potential biomarkers for some diseases. Utilizing the rapid reaction between diol and 6-bromo-3-pyridinylboronic acid (BPBA), a selective and sensitive approach was established to profile these vicinal diols using liquid chromatography-post column derivatization coupled with double precursor ion scan-mass spectrometry (LC-PCD-DPIS-MS). After derivatization, all BPBA-vicinal-diol esters gave a pair of characteristic isotope ions resulting from
Br and
Br. The unique isotope pattern generated two characteristic fragment ions of
200 and 202. Compared to a traditional offline derivatization technique, the new LC-PCD-DPIS-MS method retained the capacity of LC separation. In addition, it is more sensitive and selective than a full scan MS method. As an application, an in vitro study of the metabolism of epoxy fatty acids by human soluble epoxide hydrolase was tested. These vicinal-diol metabolites of individual regioisomers from different types of polyunsaturated fatty acids were easily identified. The limit of detection (LOD) reached as low as 25 nM. The newly developed LC-PCD-DPIS-MS method shows significant advantages in improving the selectivity and therefore can be employed as a powerful tool for profiling vicinal-diol compounds from biological matrices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27010283 |