DELLA Proteins Promote Anthocyanin Biosynthesis via Sequestering MYBL2 and JAZ Suppressors of the MYB/bHLH/WD40 Complex in Arabidopsis thaliana

Anthocyanin accumulation is recognized as a visible biomarker of plants that have suffered from environmental stresses. However, the molecular mechanisms underlying stress-induced anthocyanin biosynthesis remain unclear. Expression of anthocyanin-specific genes is regulated by the conserved MBW comp...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 9; no. 5; pp. 711 - 721
Main Authors Xie, Ye, Tan, Huijuan, Ma, Zhaoxue, Huang, Jirong
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 02.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Anthocyanin accumulation is recognized as a visible biomarker of plants that have suffered from environmental stresses. However, the molecular mechanisms underlying stress-induced anthocyanin biosynthesis remain unclear. Expression of anthocyanin-specific genes is regulated by the conserved MBW complex, which is composed of the MYB, bHLH, and WD40 subunRs in higher plants. MBW activity is repressed by MYBL2 and the JAZ family proteins, which bind competitively to bHLH and MYB/bHLH, respectively. Here, we found that MYBL2 and JAZs mediate gibberellic acid-inhibRed anthocyanin biosynthesis in Arabidopsis. Competitive pull-down and dual-lucifarase assays showed that DELLA proteins directly sequester MYBL2 and JAZ repressors, leading to the release of bHLH/MYB subunits and subsequently to the formation of active MBW complex, which then activates the anthocyanin biosynthetic pathway. The JAZ-DELLA-MYBL2 module also plays an Important role in abiotic stress-induced anthocy- anin biosynthesis. Furthermore, we found that the DELLA protein RGA accumulates upon plant exposure to abiotic stresses. Altogether, our data reveal that DELLA-promoted anthocyanin biosynthesis is mediated at least in part by MYBL2 and JAZ regulatory proteins, providing new insights into the coordinated regulation of plant growth and defense through metabolic pathway regulation.
Bibliography:31-2013/Q
DELLA, MYBL2, JAZ, anthocyanin biosynthesis, abiotic stresses
Anthocyanin accumulation is recognized as a visible biomarker of plants that have suffered from environmental stresses. However, the molecular mechanisms underlying stress-induced anthocyanin biosynthesis remain unclear. Expression of anthocyanin-specific genes is regulated by the conserved MBW complex, which is composed of the MYB, bHLH, and WD40 subunRs in higher plants. MBW activity is repressed by MYBL2 and the JAZ family proteins, which bind competitively to bHLH and MYB/bHLH, respectively. Here, we found that MYBL2 and JAZs mediate gibberellic acid-inhibRed anthocyanin biosynthesis in Arabidopsis. Competitive pull-down and dual-lucifarase assays showed that DELLA proteins directly sequester MYBL2 and JAZ repressors, leading to the release of bHLH/MYB subunits and subsequently to the formation of active MBW complex, which then activates the anthocyanin biosynthetic pathway. The JAZ-DELLA-MYBL2 module also plays an Important role in abiotic stress-induced anthocy- anin biosynthesis. Furthermore, we found that the DELLA protein RGA accumulates upon plant exposure to abiotic stresses. Altogether, our data reveal that DELLA-promoted anthocyanin biosynthesis is mediated at least in part by MYBL2 and JAZ regulatory proteins, providing new insights into the coordinated regulation of plant growth and defense through metabolic pathway regulation.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-2052
1752-9867
DOI:10.1016/j.molp.2016.01.014