Phase Reversal Technique Applied to Fishnet Metalenses

In this work, the fishnet metamaterial is applied to several converging metalenses by combining the zoning, reference phase, and phase reversal techniques. First, the zoning and reference phase techniques are implemented in several metalenses at 55 GHz (λ0=5.45 mm) with a short focal length of 1.5 λ...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of antennas and propagation Vol. 2018; no. 2018; pp. 1 - 8
Main Authors Beruete, Miguel, Minin, Oleg V., Minin, Igor V., Pacheco-Peña, Victor
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, the fishnet metamaterial is applied to several converging metalenses by combining the zoning, reference phase, and phase reversal techniques. First, the zoning and reference phase techniques are implemented in several metalenses at 55 GHz (λ0=5.45 mm) with a short focal length of 1.5 λ0. Then, the phase reversal technique is applied to these metalenses by switching from a concave to a convex profile in order to change the phase distribution inside of them. The designs are evaluated both numerically and experimentally demonstrating that chromatic dispersion (the shift of the position of the focus at different frequencies) is reduced when using the phase-reversed profiles. It is shown how the position of the focus remains at the same location within a relatively broadband frequency range of ~4% around the design frequency without affecting the overall behaviour of the metalenses. The best performance is achieved with the design that combines both reference phase and phase reversal techniques, with an experimental position of the focus of 1.75 λ0, reduced side lobes, and a power enhancement of 6.5 dB. The metalenses designed here may find applications in situations where a wideband response and low side lobes are required because of the reduced chromatic aberrations of the focus.
ISSN:1687-5869
1687-5877
DOI:10.1155/2018/9461858