The Complex Structure of Protein AaLpxC from Aquifex aeolicus with ACHN-975 Molecule Suggests an Inhibitory Mechanism at Atomic-Level against Gram-Negative Bacteria

New drugs with novel antibacterial targets for Gram-negative bacterial pathogens are desperately needed. The protein LpxC is a vital enzyme for the biosynthesis of lipid A, an outer membrane component of Gram-negative bacterial pathogens. The ACHN-975 molecule has high enzymatic inhibitory capacity...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 26; no. 5; p. 1451
Main Authors Fan, Shuai, Li, Danyang, Yan, Maocai, Feng, Xiao, Lv, Guangxin, Wu, Guangteng, Jin, Yuanyuan, Wang, Yucheng, Yang, Zhaoyong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.03.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:New drugs with novel antibacterial targets for Gram-negative bacterial pathogens are desperately needed. The protein LpxC is a vital enzyme for the biosynthesis of lipid A, an outer membrane component of Gram-negative bacterial pathogens. The ACHN-975 molecule has high enzymatic inhibitory capacity against the infectious diseases, which are caused by multidrug-resistant bacteria, but clinical research was halted because of its inflammatory response in previous studies. In this work, the structure of the recombinant UDP-3- -(R-3-hydroxymyristol)- -acetylglucosamine deacetylase from in complex with ACHN-975 was determined to a resolution at 1.21 Å. According to the solved complex structure, ACHN-975 was docked into the AaLpxC's active site, which occupied the site of AaLpxC substrate. Hydroxamate group of ACHN-975 forms five-valenced coordination with resides His74, His226, Asp230, and the long chain part of ACHN-975 containing the rigid alkynyl groups docked in further to interact with the hydrophobic area of AaLpxC. We employed isothermal titration calorimetry for the measurement of affinity between AaLpxC mutants and ACHN-975, and the results manifest the key residues (His74, Thr179, Tyr212, His226, Asp230 and His253) for interaction. The determined AaLpxC crystal structure in complex with ACHN-975 is expected to serve as a guidance and basis for the design and optimization of molecular structures of ACHN-975 analogues to develop novel drug candidates against Gram-negative bacteria.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed equally for this article.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26051451