Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells

The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining bot...

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 13; no. 10; p. 835
Main Authors Chow, James C L, Ruda, Harry E
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2073-4409
2073-4409
DOI:10.3390/cells13100835