Insights into Gradient and Anisotropic Pore Structures of Capiox ® Gas Exchange Membranes for ECMO: Theoretically Verifying SARS-CoV-2 Permeability

When using the extracorporeal capillary membrane oxygenator (sample A) for ECMO treatments of COVID-19 severely ill patients, which is dominantly used in Japan and worldwide, there is a concern about the risk of SARS-CoV-2 scattering from the gas outlet port of the membrane oxygenator. Terumo has la...

Full description

Saved in:
Bibliographic Details
Published inMembranes (Basel) Vol. 12; no. 3; p. 314
Main Authors Fukuda, Makoto, Tanaka, Ryo, Sadano, Kazunori, Tokumine, Asako, Mori, Tomohiro, Saomoto, Hitoshi, Sakai, Kiyotaka
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When using the extracorporeal capillary membrane oxygenator (sample A) for ECMO treatments of COVID-19 severely ill patients, which is dominantly used in Japan and worldwide, there is a concern about the risk of SARS-CoV-2 scattering from the gas outlet port of the membrane oxygenator. Terumo has launched two types of membranes (sample A and sample B), both of which are produced by the microphase separation processes using polymethylpentene (PMP) and polypropylene (PP), respectively. However, the pore structures of these membranes and the SARS-CoV-2 permeability through the membrane wall have not been clarified. In this study, we analyzed the pore structures of these gas exchange membranes using our previous approach and verified the SARS-CoV-2 permeation through the membrane wall. Both have the unique gradient and anisotropic pore structure which gradually become denser from the inside to the outside of the membrane wall, and the inner and outer surfaces of the membrane have completely different pore structures. The pore structure of sample A is also completely different from the other membrane made by the melt-extruded stretch process. From this, the pore structure of the ECMO membrane is controlled by designing various membrane-forming processes using the appropriate materials. In sample A, water vapor permeates through the coating layer on the outer surface, but no pores that allow SARS-CoV-2 to penetrate are observed. Therefore, it is unlikely that SARS-CoV-2 permeates through the membrane wall and scatter from sample A, raising the possibility of secondary ECMO infection. These results provide new insights into the evolution of a next-generation ECMO membrane.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes12030314