Kinetic Study on Alpha-Form Crystallization of Mixed-Acid Triacylglycerols POP, PPO, and Their Mixture

The crystallization behavior of the metastable α form of triacylglycerols (TAGs) plays a critical role as a precursor for the crystallization of more stable β' and β forms for various applications in food and pharmaceutical products. However, precise analysis of the crystallization kinetics of...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 26; no. 1; p. 220
Main Authors Taguchi, Ken, Toda, Akihiko, Hondoh, Hironori, Ueno, Satoru, Sato, Kiyotaka
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.01.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The crystallization behavior of the metastable α form of triacylglycerols (TAGs) plays a critical role as a precursor for the crystallization of more stable β' and β forms for various applications in food and pharmaceutical products. However, precise analysis of the crystallization kinetics of α has not been performed, likely due to its rapid and complex behavior. This paper presents the observation results of the initial stages of the isothermal crystallization kinetics of α forms of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP), 1,2-dipalmitoyl-3-oleoyl- -glycerol ( -PPO), and molecular compound (MC) crystals of a POP/ -PPO (1/1) mixture (MCPOP/PPO) using synchrotron radiation time-resolved X-ray diffraction and polarized optical microscopy. In all the TAGs, α crystals with a worm-like morphology started to grow rapidly in the first stage. Then, the α crystals slowly transformed into more stable forms in different manners for different TAG samples. In POP, the conversion was simple, as the α-2 form transformed into γ-3, whereas in -PPO, the lamellar distance values of the α-2 form continuously decreased with time and changed into the α-3 form. In the MCPOP/PPO crystals, in contrast, separate crystallization of α-2 of a -PPO fraction initially occurred, followed by the crystallization of α-2 of POP, and the two α forms merged into α-2 of MCPOP/PPO. This separate crystallization was caused by large differences in the crystallization kinetics of the α forms of POP and -PPO.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26010220