Sparse MRI: The application of compressed sensing for rapid MR imaging
The sparsity which is implicit in MR images is exploited to significantly undersample k‐space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit...
Saved in:
Published in | Magnetic resonance in medicine Vol. 58; no. 6; pp. 1182 - 1195 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The sparsity which is implicit in MR images is exploited to significantly undersample k‐space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finite‐differences or their wavelet coefficients. According to the recently developed mathematical theory of compressed‐sensing, images with a sparse representation can be recovered from randomly undersampled k‐space data, provided an appropriate nonlinear recovery scheme is used. Intuitively, artifacts due to random undersampling add as noise‐like interference. In the sparse transform domain the significant coefficients stand out above the interference. A nonlinear thresholding scheme can recover the sparse coefficients, effectively recovering the image itself. In this article, practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference. Incoherence is introduced by pseudo‐random variable‐density undersampling of phase‐encodes. The reconstruction is performed by minimizing the ℓ1 norm of a transformed image, subject to data fidelity constraints. Examples demonstrate improved spatial resolution and accelerated acquisition for multislice fast spin‐echo brain imaging and 3D contrast enhanced angiography. Magn Reson Med, 2007. © 2007 Wiley‐Liss, Inc. |
---|---|
Bibliography: | NSF - No. DMS 0505303 GE Healthcare ArticleID:MRM21391 ark:/67375/WNG-ZV3RPPWN-8 NIH - No. R01 HL074332; No. R01 HL067161; No. R01 HL075803 istex:84B16CD57463AD87861232E2370FFCA29CE009FA ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0740-3194 1522-2594 |
DOI: | 10.1002/mrm.21391 |