The Warburg Effect 97 Years after Its Discovery

The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabo...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 12; no. 10; p. 2819
Main Authors Pascale, Rosa Maria, Calvisi, Diego Francesco, Simile, Maria Maddalena, Feo, Claudio Francesco, Feo, Francesco
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.09.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers12102819