Deciphering the lung microbiota in COVID-19 patients: insights from culture analysis, FilmArray pneumonia panel, ventilation impact, and mortality trends
Few studies have analyzed the role of the lung microbiome in the diagnosis of pulmonary coinfection in ventilated ICU COVID-19 patients. We characterized the lung microbiota in COVID-19 patients with severe pneumonia on invasive mechanical ventilation using full-length 16S rRNA gene sequencing and e...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 30035 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.12.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Few studies have analyzed the role of the lung microbiome in the diagnosis of pulmonary coinfection in ventilated ICU COVID-19 patients. We characterized the lung microbiota in COVID-19 patients with severe pneumonia on invasive mechanical ventilation using full-length 16S rRNA gene sequencing and established its relationship with coinfections, mortality, and the need for mechanical ventilation for more than 7 days. This study included 67 COVID-19 ICU patients. DNA extracted from mini-bronchoalveolar lavage fluid and endotracheal aspirates was amplified by PCR with specific 16S primers (27F and 1492R). General and relative bacterial abundance analysis was also conducted. Alpha diversity was measured by the Shannon and Simpson indices, and differences in the microbiota were established using beta diversity. A linear discriminant analysis (LDA) effect size algorithm was implemented to describe biomarkers.
Streptococcus
spp. represented 51% of the overall microbial abundance. There were no differences in alpha diversity between the analyzed variables. There was variation in bacterial composition between samples that had positive and negative cultures. The genera
Veillonella
sp.,
Granulicatella
sp.,
Enterococcus
sp. and
Lactiplantibacillus
sp., with LDA scores > 2, were biomarkers associated with negative cultures.
Rothia
sp., with an LDA score > 2, was a biomarker associated with mortality. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-81738-8 |