HMGCS2 and AMACR as potential targets linking mitochondrial dysfunction and ulcerative colitis

Ulcerative colitis (UC) is characterised notably by an imbalance in intestinal mucosal homeostasis. Although mitochondrial dysfunction has been identified as a potential contributor to this imbalance, it remains an incomplete understanding. Consequently, further investigation into the role of mitoch...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 31783 - 15
Main Authors Zhu, Rui, Bai, Xinyu, Li, Zhangqin, Liang, Hao, Song, Huixian, Chen, Lifang, Miao, Yinglei, Zhang, Fengrui, Niu, Junkun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.12.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ulcerative colitis (UC) is characterised notably by an imbalance in intestinal mucosal homeostasis. Although mitochondrial dysfunction has been identified as a potential contributor to this imbalance, it remains an incomplete understanding. Consequently, further investigation into the role of mitochondria in UC is warranted. The study focusing on the GSE87466 dataset for differential gene expression analysis. Mitochondria-related genes were sourced from the MitoCart3.0 database. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify hub genes. The intersection of DEGs, hub genes, and mitochondria-related genes facilitated the identification of 14 mitochondria-related differentially expressed genes (MitoDEGs). Three machine learning algorithms were then applied to select signature MitoDEGs specific to UC: HMGCS2 and AMACR. They have decreased expression in UC patients and have a high diagnostic value for UC. In the inflammatory environment, knockout of both HMGCS2 and AMACR showed disruption of mitochondrial structure and function. Among them, the AMACR knockdown group had an increased number of damaged mitochondria and a significant reduction in the length, area and circumference of MAMs. Therefore, the study identified two new signature MitoDEGs in UC. HMGCS2 and AMACR provide insights into the interplay between mitochondrial dysfunction and UC intestinal mucosal homeostasis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-82900-y