Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors

[Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hyd...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 531; pp. 83 - 90
Main Authors Gao, Shuwen, Sui, Yanwei, Wei, Fuxiang, Qi, Jiqiu, Meng, Qingkun, Ren, Yaojian, He, Yezeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g−1 at 1 A g−1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g−1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg−1 at the power density of 800 W kg−1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.
AbstractList Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni and Co , we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g at 1 A g in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g ) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg at the power density of 800 W kg . All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.
[Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g−1 at 1 A g−1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g−1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg−1 at the power density of 800 W kg−1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.
Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g-1 at 1 A g-1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g-1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg-1 at the power density of 800 W kg-1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g-1 at 1 A g-1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g-1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg-1 at the power density of 800 W kg-1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.
Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g−1 at 1 A g−1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g−1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg−1 at the power density of 800 W kg−1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.
Author Gao, Shuwen
Wei, Fuxiang
Meng, Qingkun
Ren, Yaojian
Qi, Jiqiu
He, Yezeng
Sui, Yanwei
Author_xml – sequence: 1
  givenname: Shuwen
  surname: Gao
  fullname: Gao, Shuwen
– sequence: 2
  givenname: Yanwei
  surname: Sui
  fullname: Sui, Yanwei
– sequence: 3
  givenname: Fuxiang
  surname: Wei
  fullname: Wei, Fuxiang
– sequence: 4
  givenname: Jiqiu
  surname: Qi
  fullname: Qi, Jiqiu
– sequence: 5
  givenname: Qingkun
  surname: Meng
  fullname: Meng, Qingkun
– sequence: 6
  givenname: Yaojian
  surname: Ren
  fullname: Ren, Yaojian
– sequence: 7
  givenname: Yezeng
  surname: He
  fullname: He, Yezeng
  email: hyz0217@hotmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30025331$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYhompsdvqH_BgOHqZKcwwMJN4MdVWkyZe9Ew-4JuWXWZYgdX472Wz1YOHeoIPnpeE97kgZ2tckZDXnLWccXm1bbfW57ZjfGyZapkQz8iGs2loFGf9Gdkw1vFmUpM6Jxc5bxnjfBimF-S8rzdD3_MNyR9gdRh8XJvgd0hXb3cYrmw0EApdsEBoYrqHek7nBAv-jGlHDWR0FAPakqJDukDB5CFkOsdEH_z9A91jqvsFVos0H-pkYQ_Wl5jyS_J8riy-elwvybebj1-vPzV3X24_X7-_a6yYutJYa5WQXPSjkQaF6KZJoZWzsArNLN0IdXBQ_6FQMMP72SljBqlGJbDnXX9J3p7e3af4_YC56MVniyHAivGQdce5HOU0jPL_KFO1rlHwI_rmET2YBZ3eJ79A-qX_dFqB7gTYFHNOOP9FONNHcXqrj-L0UZxmSldxNTT-E6pdQaleSgIfno6-O0WxdvnDY9LZeqy9O5-qIO2ifyr-G8XgtZU
CitedBy_id crossref_primary_10_1016_j_inoche_2025_114110
crossref_primary_10_1039_D2DT03872B
crossref_primary_10_1002_celc_202200036
crossref_primary_10_1016_j_apsusc_2019_144395
crossref_primary_10_1002_zaac_201900035
crossref_primary_10_1016_j_talanta_2022_123596
crossref_primary_10_1007_s40710_024_00718_2
crossref_primary_10_1021_acs_langmuir_4c02052
crossref_primary_10_1021_acs_energyfuels_4c03831
crossref_primary_10_1016_j_electacta_2024_144856
crossref_primary_10_1016_j_cclet_2022_107787
crossref_primary_10_1016_j_est_2024_112676
crossref_primary_10_1016_j_pnsc_2019_08_014
crossref_primary_10_1021_acsaem_0c00393
crossref_primary_10_1016_j_apsusc_2021_150324
crossref_primary_10_1016_j_jpowsour_2024_235506
crossref_primary_10_1016_j_apsusc_2020_145260
crossref_primary_10_1016_j_cej_2022_137368
crossref_primary_10_1021_acs_langmuir_4c04908
crossref_primary_10_1016_j_electacta_2021_138684
crossref_primary_10_1021_acsaem_1c00230
crossref_primary_10_1039_C9DT04522H
crossref_primary_10_1016_j_jallcom_2023_172512
crossref_primary_10_1007_s00339_022_06095_7
crossref_primary_10_1007_s41918_019_00055_1
crossref_primary_10_1016_j_cclet_2024_110397
crossref_primary_10_1016_j_inoche_2024_112575
crossref_primary_10_1016_j_inoche_2022_109391
crossref_primary_10_1016_j_jcis_2022_04_126
crossref_primary_10_1002_ente_202301160
crossref_primary_10_1007_s11051_019_4624_0
crossref_primary_10_1016_j_jpowsour_2022_231029
crossref_primary_10_1016_j_est_2022_106317
crossref_primary_10_1016_j_jpowsour_2023_233968
crossref_primary_10_1016_j_jcis_2020_04_127
crossref_primary_10_1002_sstr_202100115
crossref_primary_10_1016_j_mtla_2024_102021
crossref_primary_10_1039_D3QI00123G
crossref_primary_10_1016_j_solmat_2022_112019
crossref_primary_10_1016_j_electacta_2021_138434
crossref_primary_10_1016_j_jallcom_2024_173557
crossref_primary_10_1016_j_electacta_2021_138433
crossref_primary_10_1016_j_jallcom_2024_174648
crossref_primary_10_1039_D1TA00652E
crossref_primary_10_1016_j_electacta_2024_144609
crossref_primary_10_1088_1361_6528_ac17c2
crossref_primary_10_1016_j_cep_2020_108232
crossref_primary_10_1039_D4SM01139B
crossref_primary_10_1021_acsaem_2c03026
crossref_primary_10_1002_smll_202300054
crossref_primary_10_1021_acs_cgd_1c01109
crossref_primary_10_1016_j_jallcom_2020_156312
crossref_primary_10_1007_s10854_023_11286_w
crossref_primary_10_1007_s10854_020_03597_z
crossref_primary_10_1016_j_apsusc_2023_156533
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1002_cssc_202100116
crossref_primary_10_1016_j_ijhydene_2022_11_084
crossref_primary_10_1016_j_colsurfa_2022_130683
crossref_primary_10_1007_s00339_024_08019_z
crossref_primary_10_1016_j_apsusc_2020_146920
crossref_primary_10_1016_j_fuel_2024_133805
crossref_primary_10_1016_j_jallcom_2022_167413
crossref_primary_10_1016_j_ccr_2020_213660
crossref_primary_10_1021_acsanm_0c01062
crossref_primary_10_1039_D0CY01019G
crossref_primary_10_1016_j_est_2024_113300
crossref_primary_10_1021_acs_energyfuels_4c05687
crossref_primary_10_1016_j_materresbull_2023_112320
crossref_primary_10_1021_acsomega_3c02559
crossref_primary_10_1039_D1DT03113A
crossref_primary_10_1016_j_cej_2019_122982
crossref_primary_10_1016_j_microc_2021_106927
crossref_primary_10_1016_j_est_2021_103302
crossref_primary_10_1016_j_est_2021_103303
crossref_primary_10_1016_j_est_2022_106537
crossref_primary_10_1016_j_mtchem_2023_101754
crossref_primary_10_1021_acs_iecr_8b03898
crossref_primary_10_1016_j_est_2023_107817
crossref_primary_10_1016_j_ccr_2025_216547
crossref_primary_10_1016_j_colsurfa_2021_127665
crossref_primary_10_1016_j_diamond_2024_111484
crossref_primary_10_1016_j_apsadv_2020_100054
crossref_primary_10_1021_acs_cgd_0c00601
crossref_primary_10_1007_s11581_021_03954_w
crossref_primary_10_1021_acs_inorgchem_4c05496
crossref_primary_10_1016_j_jelechem_2023_117266
crossref_primary_10_1021_acs_energyfuels_1c01722
crossref_primary_10_1021_acs_iecr_1c02530
crossref_primary_10_1002_est2_543
crossref_primary_10_1016_j_jcis_2024_09_074
crossref_primary_10_1016_j_susmat_2023_e00588
crossref_primary_10_2139_ssrn_4072314
crossref_primary_10_1021_acssuschemeng_9b06590
crossref_primary_10_1002_sstr_202100200
crossref_primary_10_1016_j_jelechem_2021_114993
crossref_primary_10_1016_j_compositesb_2021_108624
crossref_primary_10_1016_j_apsusc_2021_150929
crossref_primary_10_1007_s10854_019_02163_6
crossref_primary_10_1016_j_est_2021_103082
crossref_primary_10_1002_smll_202107284
crossref_primary_10_1088_1361_6528_ac6ff2
crossref_primary_10_1016_j_jallcom_2022_167354
crossref_primary_10_1016_j_jcis_2022_07_136
crossref_primary_10_1021_acs_inorgchem_4c04771
crossref_primary_10_1016_j_synthmet_2021_116775
crossref_primary_10_1016_j_jcis_2024_07_018
crossref_primary_10_1021_acsomega_1c03377
crossref_primary_10_1016_j_ceramint_2020_11_088
crossref_primary_10_3390_molecules30030513
crossref_primary_10_1007_s10854_019_02759_y
crossref_primary_10_1021_acs_inorgchem_9b02762
crossref_primary_10_1002_ange_202100123
crossref_primary_10_1016_j_jcis_2021_05_002
crossref_primary_10_1021_acsami_9b11994
crossref_primary_10_1039_D0QM00597E
crossref_primary_10_1002_adfm_202312692
crossref_primary_10_1016_j_jallcom_2024_176991
crossref_primary_10_1007_s11051_021_05318_x
crossref_primary_10_1016_j_materresbull_2022_111996
crossref_primary_10_1016_j_colsurfa_2022_128954
crossref_primary_10_1002_er_6618
crossref_primary_10_1557_s43579_023_00501_8
crossref_primary_10_1002_eom2_12106
crossref_primary_10_1016_j_jallcom_2022_165982
crossref_primary_10_1007_s10854_023_10246_8
crossref_primary_10_1039_C8TA11948A
crossref_primary_10_1016_j_apsusc_2021_151344
crossref_primary_10_1016_j_ijhydene_2020_04_044
crossref_primary_10_1016_j_diamond_2021_108358
crossref_primary_10_1016_j_est_2024_111670
crossref_primary_10_1039_D2TA03074H
crossref_primary_10_1007_s10904_022_02503_w
crossref_primary_10_1016_j_seppur_2023_123101
crossref_primary_10_1021_acs_energyfuels_3c04598
crossref_primary_10_1021_acsaelm_3c01170
crossref_primary_10_1016_j_jece_2020_104986
crossref_primary_10_1039_C9DT03306H
crossref_primary_10_1007_s11581_024_05918_2
crossref_primary_10_1021_acsanm_0c01419
crossref_primary_10_1007_s10854_021_05529_x
crossref_primary_10_1021_acsanm_0c02507
crossref_primary_10_3390_molecules28145613
crossref_primary_10_1002_slct_202400106
crossref_primary_10_1021_acsanm_3c01897
crossref_primary_10_1007_s10854_020_03203_2
crossref_primary_10_1039_D4NJ05024J
crossref_primary_10_1016_j_ccr_2020_213341
crossref_primary_10_1002_smll_202203702
crossref_primary_10_1016_j_ceramint_2020_11_190
crossref_primary_10_1016_j_apsusc_2020_148354
crossref_primary_10_1021_acsanm_3c02859
crossref_primary_10_1016_j_synthmet_2021_116753
crossref_primary_10_1016_j_materresbull_2024_112681
crossref_primary_10_1039_D4CC04086D
crossref_primary_10_1007_s11426_024_2374_0
crossref_primary_10_1039_C9TA09896H
crossref_primary_10_1016_j_est_2021_103627
crossref_primary_10_1016_j_ijhydene_2025_01_208
crossref_primary_10_1016_j_jelechem_2022_116885
crossref_primary_10_1021_acs_inorgchem_2c00082
crossref_primary_10_1039_C9NJ05198H
crossref_primary_10_1016_j_ceramint_2024_09_332
crossref_primary_10_1016_j_est_2021_103176
crossref_primary_10_1016_j_microc_2021_106229
crossref_primary_10_1039_D0DT01676D
crossref_primary_10_1021_acs_inorgchem_4c02479
crossref_primary_10_1016_j_apsusc_2020_146954
crossref_primary_10_1002_jccs_202000314
crossref_primary_10_1016_j_est_2025_115545
crossref_primary_10_1007_s10854_019_02516_1
crossref_primary_10_1021_acsomega_0c01053
crossref_primary_10_1002_smll_202306616
crossref_primary_10_1002_anie_202100123
crossref_primary_10_1016_j_ijoes_2023_100053
crossref_primary_10_1142_S1793292019500887
crossref_primary_10_1557_jmr_2020_93
crossref_primary_10_1039_D2NJ04080H
crossref_primary_10_1016_j_est_2023_108663
crossref_primary_10_1016_j_est_2023_107213
crossref_primary_10_1039_D0NJ02414G
crossref_primary_10_1039_D0NR02016H
crossref_primary_10_1016_j_synthmet_2019_116262
crossref_primary_10_1016_j_colsurfa_2021_127012
crossref_primary_10_1016_j_apsusc_2019_145089
crossref_primary_10_1007_s11581_020_03649_8
crossref_primary_10_1016_j_jallcom_2018_12_023
crossref_primary_10_1016_j_electacta_2020_135617
crossref_primary_10_1016_j_est_2022_106395
crossref_primary_10_1016_j_cej_2023_146638
crossref_primary_10_1021_acsanm_3c05513
crossref_primary_10_1002_admi_202100642
crossref_primary_10_1088_1361_6528_ab991d
crossref_primary_10_1021_acsaem_4c00919
crossref_primary_10_1039_D0RA08982F
crossref_primary_10_3390_ma13214870
crossref_primary_10_1016_j_jallcom_2020_158205
crossref_primary_10_1002_adem_202400378
crossref_primary_10_1007_s00339_023_07257_x
crossref_primary_10_1016_j_est_2023_109264
crossref_primary_10_1016_j_jallcom_2021_163070
crossref_primary_10_1016_j_jelechem_2022_116860
crossref_primary_10_1016_j_fuel_2024_131686
crossref_primary_10_1016_j_mtsust_2024_101049
crossref_primary_10_1016_j_est_2021_103155
crossref_primary_10_1016_j_matchemphys_2024_129326
crossref_primary_10_1002_aesr_202100024
crossref_primary_10_1007_s10854_019_02304_x
crossref_primary_10_1016_j_jssc_2022_123549
crossref_primary_10_3390_ma16062423
crossref_primary_10_1016_j_jcis_2020_04_083
crossref_primary_10_1186_s11671_020_03321_0
crossref_primary_10_1002_asia_202300859
crossref_primary_10_1016_j_ceramint_2021_05_225
crossref_primary_10_1016_j_est_2024_112280
crossref_primary_10_1039_D1MA00719J
crossref_primary_10_1039_D2RA04939B
crossref_primary_10_1016_j_cej_2020_128269
crossref_primary_10_1002_asia_202200685
crossref_primary_10_1016_j_est_2022_104993
crossref_primary_10_1016_j_synthmet_2019_116215
crossref_primary_10_1016_j_jcis_2021_10_089
crossref_primary_10_1002_celc_201900687
crossref_primary_10_1007_s10853_021_06187_4
crossref_primary_10_1016_j_est_2023_109164
crossref_primary_10_1021_acs_inorgchem_0c01157
crossref_primary_10_1016_j_jallcom_2023_170038
crossref_primary_10_1039_D1TA02850B
crossref_primary_10_1088_1361_6528_ab80fb
crossref_primary_10_1016_j_cej_2021_129993
crossref_primary_10_1021_acsami_4c09616
crossref_primary_10_1016_j_jelechem_2023_117895
crossref_primary_10_1007_s12274_023_6265_y
crossref_primary_10_1016_j_ceramint_2022_11_105
crossref_primary_10_1007_s12274_022_4902_5
crossref_primary_10_1016_j_electacta_2020_136124
crossref_primary_10_1016_j_est_2021_102611
crossref_primary_10_1021_acsami_1c15824
crossref_primary_10_1016_j_mseb_2021_115136
crossref_primary_10_1016_j_mtchem_2024_102197
crossref_primary_10_1002_smll_202311449
crossref_primary_10_1088_1402_4896_ad92c1
crossref_primary_10_1016_j_jssc_2019_07_019
crossref_primary_10_1007_s10854_021_06177_x
crossref_primary_10_1016_j_est_2021_102968
crossref_primary_10_1021_acs_inorgchem_1c03316
crossref_primary_10_1021_acs_energyfuels_1c03624
crossref_primary_10_1016_j_ceramint_2021_03_059
crossref_primary_10_1016_j_apsusc_2020_146080
crossref_primary_10_1016_j_mattod_2021_03_011
crossref_primary_10_1142_S1793292019500322
crossref_primary_10_1016_j_jpowsour_2020_229444
crossref_primary_10_1002_ente_202100350
crossref_primary_10_1016_j_est_2020_102149
crossref_primary_10_20964_2020_06_55
crossref_primary_10_1016_j_jssc_2022_123056
crossref_primary_10_1002_slct_201900305
crossref_primary_10_1039_D2NJ00957A
crossref_primary_10_1016_j_apsusc_2019_04_195
crossref_primary_10_1016_j_synthmet_2021_116929
crossref_primary_10_1016_j_jcis_2019_06_031
crossref_primary_10_1088_2632_959X_abf8c2
crossref_primary_10_1016_j_cplett_2024_141474
crossref_primary_10_1016_j_matchemphys_2023_127877
crossref_primary_10_1039_D4QI02743D
crossref_primary_10_1016_j_matlet_2022_131804
crossref_primary_10_1021_acs_jpcc_4c02187
crossref_primary_10_1016_j_enchem_2019_100025
crossref_primary_10_1016_j_synthmet_2021_116931
crossref_primary_10_1016_j_ijhydene_2020_09_004
crossref_primary_10_1021_acsanm_1c00522
crossref_primary_10_1039_D2NJ05481G
crossref_primary_10_1016_j_est_2021_102718
crossref_primary_10_1016_j_compositesb_2020_107767
crossref_primary_10_1002_cnl2_128
crossref_primary_10_1016_j_jcis_2018_12_095
crossref_primary_10_1016_j_est_2022_105700
crossref_primary_10_1016_j_jpcs_2021_110336
crossref_primary_10_1016_j_electacta_2020_135828
crossref_primary_10_1016_j_est_2023_106869
crossref_primary_10_1016_j_jcis_2019_07_063
crossref_primary_10_1021_acsaem_8b02128
crossref_primary_10_1039_C9NJ05503G
crossref_primary_10_1016_j_electacta_2020_135826
crossref_primary_10_1016_j_matchemphys_2021_124530
crossref_primary_10_1007_s13204_019_01233_9
crossref_primary_10_1515_ntrev_2022_0042
crossref_primary_10_1557_s43578_022_00567_5
crossref_primary_10_1016_j_jssc_2019_121084
crossref_primary_10_1021_acs_iecr_0c05516
crossref_primary_10_1016_j_est_2024_114780
crossref_primary_10_1016_j_jsamd_2021_07_007
crossref_primary_10_1002_admi_202201431
crossref_primary_10_1016_j_molliq_2022_119319
crossref_primary_10_1016_j_jpowsour_2019_04_016
crossref_primary_10_1016_j_est_2023_107711
crossref_primary_10_1039_D2NJ03342A
crossref_primary_10_1021_acs_inorgchem_2c03879
crossref_primary_10_3390_cryst13111593
crossref_primary_10_1016_j_diamond_2023_110281
crossref_primary_10_1016_j_est_2021_103907
crossref_primary_10_1021_acsaem_2c01635
crossref_primary_10_1039_D3RA07788H
crossref_primary_10_1002_chem_202400157
crossref_primary_10_1021_acsanm_2c01488
crossref_primary_10_1016_j_jallcom_2020_154069
crossref_primary_10_1007_s11664_023_10229_9
crossref_primary_10_1002_aenm_202100321
crossref_primary_10_1007_s10800_023_01888_x
crossref_primary_10_1016_j_jssc_2022_122994
crossref_primary_10_3390_polym17020130
crossref_primary_10_1007_s10854_020_04174_0
crossref_primary_10_1016_j_cej_2024_155240
crossref_primary_10_1002_flm2_32
crossref_primary_10_1088_2053_1591_ab8d5d
crossref_primary_10_1088_1361_6528_ac4eb1
crossref_primary_10_1016_j_jallcom_2024_176007
crossref_primary_10_1016_j_jpowsour_2024_234423
crossref_primary_10_1016_j_est_2022_104729
crossref_primary_10_1016_j_apsusc_2019_06_238
crossref_primary_10_1016_j_cis_2023_103022
crossref_primary_10_1021_acsanm_4c05704
crossref_primary_10_1002_tcr_202200055
crossref_primary_10_1016_j_colsurfa_2024_134814
crossref_primary_10_1016_j_jssc_2018_11_038
crossref_primary_10_1016_j_est_2023_106766
Cites_doi 10.1021/acsami.5b10781
10.1021/acs.nanolett.6b05004
10.1007/s10853-018-2005-1
10.1016/j.cclet.2014.05.032
10.1016/j.jcis.2018.02.010
10.1002/adma.201600689
10.1002/adfm.201001054
10.1016/j.jpowsour.2014.05.134
10.1016/j.molstruc.2016.08.013
10.1016/j.nanoen.2016.11.024
10.1016/j.matchemphys.2015.12.051
10.1039/c2cc33433j
10.1002/aenm.201400977
10.1021/acs.chemmater.5b04075
10.1039/C5EE00762C
10.1002/aenm.201501833
10.1039/C6TA09805C
10.1016/j.rser.2015.12.249
10.1021/acsami.5b07941
10.1038/nature01650
10.1039/C7TA07464F
10.1016/j.nanoen.2017.07.010
10.1016/j.electacta.2016.12.184
10.1039/C4TA04140B
10.1002/smll.201603102
10.1007/s00604-017-2438-2
10.1002/adfm.201200695
10.1088/1361-6528/28/6/065406
10.1021/acsnano.5b05041
10.1038/nmat2297
10.1039/C6TA08331E
10.1038/nchem.2515
10.1016/j.nanoen.2016.04.003
10.1002/chem.201604071
10.1149/2.074205jes
10.1039/C6TA05384J
10.1016/j.nanoen.2017.02.028
10.1016/j.electacta.2016.06.090
10.1016/j.electacta.2015.01.082
10.1039/C4TA04346D
10.1016/j.biortech.2012.02.010
10.1021/acsami.7b03786
10.1039/C3CC48112C
10.3390/ma9040246
10.1039/C6RA03992H
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2018.07.044
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 90
ExternalDocumentID 30025331
10_1016_j_jcis_2018_07_044
S0021979718308002
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c492t-ccc7461438b6be442997ec6f4c7ebf6d8ac6fda5337e40b13fd7bb567874e3123
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 15:25:27 EDT 2025
Thu Jul 10 23:54:21 EDT 2025
Wed Feb 19 02:43:54 EST 2025
Tue Jul 01 01:18:34 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Fri Feb 23 02:24:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercapacitors
Ni-MOF
Ni/Co-MOF
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-ccc7461438b6be442997ec6f4c7ebf6d8ac6fda5337e40b13fd7bb567874e3123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30025331
PQID 2073318416
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2116869586
proquest_miscellaneous_2073318416
pubmed_primary_30025331
crossref_primary_10_1016_j_jcis_2018_07_044
crossref_citationtrail_10_1016_j_jcis_2018_07_044
elsevier_sciencedirect_doi_10_1016_j_jcis_2018_07_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Motevalli, Zarghami, Panahi-Kalamuei (b0185) 2016; 27
Phuong, Buess-Herman, Thom, Nam, Lam, Thanh (b0190) 2016; 5
Gao, Sui, Wei, Qi, Meng, He (b0215) 2018; 29
Pachfule, Shinde, Majumder, Xu (b0075) 2016; 8
Kang, Sun, Kong, Lang, Luo (b0230) 2014; 25
Amali, Sun, Xu (b0100) 2014; 50
Pérez, Yeon, Ségalini, Presser, Taberna (b0025) 2013; 23
Jiao, Pei, Yan, Chen, Hu, Chen (b0130) 2016; 4
Xia, Mahmood, Zou, Xu (b0105) 2015; 8
Tsai, Yang, Lee, Huang (b0245) 2016; 9
Qu, Cheng, Li, Yuan, Chen, Chen, Wang, Peng (b0255) 2016; 28
Huang, Yan, Sui, Wei, Qi, Meng, He (b0020) 2017; 28
Du, Dong, Liu, Wei, Liu, Liu (b0145) 2018; 518
Simon, Gogotsi (b0005) 2008; 7
Campagnol, Romero-Vara, Deleu, Stappers, Binnemans, De Vos, Fransaer (b0110) 2014; 1
Zhang, Luo, Tang, Ye, Peng, Tang, Sun, Fransaer (b0050) 2017; 31
Wang, Wang, Zhang, Tong, Zhang (b0170) 2017; 184
Yang, Xiong, Zheng, Qiu, Wei (b0115) 2014; 2
Zou, Chen, Liu, Yu, Liang, Bhaway, Gao, Zhu (b0175) 2015; 10
Liu, Shi, Zhai, Cheng, Liu, Wang (b0120) 2016; 8
Chaikittisilp, Hu, Wang, Huang, Fujita, Wu, Chen, Yamauchi, Ariga (b0095) 2012; 48
Saheli, Rezvani (b0080) 2017; 1127
Sun, Huang, Sui, Wei, Qi, Meng, Hu, He (b0225) 2017; 28
Yang, Zheng, Xiong, Li, Wei (b0165) 2014; 2
Hong, Lee, Ahn, Pak, Lee, Jang, Lee, Hou, Cho, Morris, Shin, Cha, Sohn, Kim (b0210) 2017; 39
Xu, Yang, Xue, Wang, Cao (b0195) 2016; 211
Yan, Gu, Zheng, Zheng, Pang, Xue (b0135) 2016; 4
Dai, Zang, Yang, Sun, Si, Huang, Dong (b0220) 2015; 7
Bendi, Kumar, Bhavanasi, Parida, Lee (b0065) 2016; 6
Zhang, Yoshikawa, Awaga (b0070) 2016; 28
Jayakumar, Antony, Wang, Lee (b0015) 2017; 13
Chen, Wang, Cao, Liu, Zhou, Ouyang, Jiat (b0035) 2017; 9
Gao, Sui, Wei, Qi, Meng, He (b0085) 2018; 53
Jiao, Chen, Chen, Pei, Hu (b0160) 2017; 5
Jiao, Pei, Chen, Yan, Hu, Zhang, Chen (b0180) 2017; 5
Li, Yu, Gu, Tang, Wang, Lou (b0235) 2017; 28
Wu, Wang, Ren, Zhao, Zhou, Li, Cheng (b0045) 2010; 20
Tang, Tang, Gong (b0240) 2012; 159
Xia, Qu, Liang, Zhao, Dai, Qiu, Jiao, Zhang, Huang, Guo, Dang, Zou, Xia, Xu, Liu (b0090) 2017; 17
Elmouwahidi, Zapata-Benabithe, Carrasco-Marín, Moreno-Castilla (b0040) 2012; 111
González, Goikolea, Barrena, Mysyk (b0030) 2016; 58
Yaghi, Keeffe, Ockwig, Chae, Eddaoudi (b0060) 2003; 423
Srimuk, Luanwuthi, Krittayavathananon, Sawangphruk (b0150) 2015; 157
Shen, Wang, Xu, Li, Dou, Zhang (b0055) 2015; 5
Yang, Ma, Gao, Wei (b0140) 2017; 23
Chang, Sui, Qi, Jiang, He, Wei, Meng, Jin (b0010) 2017; 226
Wei, Zhang, Wu, Tang, Li, Shen, Wang, Zhou, Lan (b0155) 2017; 34
Qu, Jiao, Zhao, Chen, Zou, Walton, Liu (b0125) 2016; 26
He, Li, Wang, Wen, Gao, Ma, Yang, Yang (b0200) 2016; 6
Saravanakumar, Purushothaman, Muralidharan (b0250) 2016; 170
Zhu, Ji, Wu, Song, Hou, Wu, He, Chen, Banks (b0205) 2014; 267
Liu (10.1016/j.jcis.2018.07.044_b0120) 2016; 8
Yang (10.1016/j.jcis.2018.07.044_b0115) 2014; 2
Jiao (10.1016/j.jcis.2018.07.044_b0160) 2017; 5
Saravanakumar (10.1016/j.jcis.2018.07.044_b0250) 2016; 170
Pachfule (10.1016/j.jcis.2018.07.044_b0075) 2016; 8
Yang (10.1016/j.jcis.2018.07.044_b0140) 2017; 23
Phuong (10.1016/j.jcis.2018.07.044_b0190) 2016; 5
Chang (10.1016/j.jcis.2018.07.044_b0010) 2017; 226
Xia (10.1016/j.jcis.2018.07.044_b0105) 2015; 8
Huang (10.1016/j.jcis.2018.07.044_b0020) 2017; 28
Srimuk (10.1016/j.jcis.2018.07.044_b0150) 2015; 157
Wu (10.1016/j.jcis.2018.07.044_b0045) 2010; 20
Tang (10.1016/j.jcis.2018.07.044_b0240) 2012; 159
Simon (10.1016/j.jcis.2018.07.044_b0005) 2008; 7
Hong (10.1016/j.jcis.2018.07.044_b0210) 2017; 39
Jiao (10.1016/j.jcis.2018.07.044_b0130) 2016; 4
Amali (10.1016/j.jcis.2018.07.044_b0100) 2014; 50
Qu (10.1016/j.jcis.2018.07.044_b0255) 2016; 28
Yan (10.1016/j.jcis.2018.07.044_b0135) 2016; 4
He (10.1016/j.jcis.2018.07.044_b0200) 2016; 6
Kang (10.1016/j.jcis.2018.07.044_b0230) 2014; 25
Zou (10.1016/j.jcis.2018.07.044_b0175) 2015; 10
Tsai (10.1016/j.jcis.2018.07.044_b0245) 2016; 9
Li (10.1016/j.jcis.2018.07.044_b0235) 2017; 28
Shen (10.1016/j.jcis.2018.07.044_b0055) 2015; 5
Gao (10.1016/j.jcis.2018.07.044_b0215) 2018; 29
Wei (10.1016/j.jcis.2018.07.044_b0155) 2017; 34
Yaghi (10.1016/j.jcis.2018.07.044_b0060) 2003; 423
Wang (10.1016/j.jcis.2018.07.044_b0170) 2017; 184
Zhang (10.1016/j.jcis.2018.07.044_b0070) 2016; 28
Jiao (10.1016/j.jcis.2018.07.044_b0180) 2017; 5
Chaikittisilp (10.1016/j.jcis.2018.07.044_b0095) 2012; 48
Du (10.1016/j.jcis.2018.07.044_b0145) 2018; 518
Zhu (10.1016/j.jcis.2018.07.044_b0205) 2014; 267
Sun (10.1016/j.jcis.2018.07.044_b0225) 2017; 28
Campagnol (10.1016/j.jcis.2018.07.044_b0110) 2014; 1
Motevalli (10.1016/j.jcis.2018.07.044_b0185) 2016; 27
Qu (10.1016/j.jcis.2018.07.044_b0125) 2016; 26
Jayakumar (10.1016/j.jcis.2018.07.044_b0015) 2017; 13
Pérez (10.1016/j.jcis.2018.07.044_b0025) 2013; 23
Xia (10.1016/j.jcis.2018.07.044_b0090) 2017; 17
Elmouwahidi (10.1016/j.jcis.2018.07.044_b0040) 2012; 111
Bendi (10.1016/j.jcis.2018.07.044_b0065) 2016; 6
Xu (10.1016/j.jcis.2018.07.044_b0195) 2016; 211
González (10.1016/j.jcis.2018.07.044_b0030) 2016; 58
Yang (10.1016/j.jcis.2018.07.044_b0165) 2014; 2
Dai (10.1016/j.jcis.2018.07.044_b0220) 2015; 7
Saheli (10.1016/j.jcis.2018.07.044_b0080) 2017; 1127
Chen (10.1016/j.jcis.2018.07.044_b0035) 2017; 9
Gao (10.1016/j.jcis.2018.07.044_b0085) 2018; 53
Zhang (10.1016/j.jcis.2018.07.044_b0050) 2017; 31
References_xml – volume: 267
  start-page: 888
  year: 2014
  end-page: 900
  ident: b0205
  article-title: Spinel NiCo
  publication-title: J. Power Sources
– volume: 8
  start-page: 718
  year: 2016
  end-page: 724
  ident: b0075
  article-title: Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework
  publication-title: Nat. Chem.
– volume: 2
  start-page: 19005
  year: 2014
  end-page: 19010
  ident: b0165
  article-title: Zn-doped Ni-MOF material with a high supercapacitive performance
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2016
  ident: b0065
  article-title: Metal organic framework-derived metal phosphates as electrode materials for supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 25396
  year: 2015
  ident: b0220
  article-title: Template synthesis of shape-tailorable NiS
  publication-title: ACS Appl. Mater. Interface
– volume: 157
  start-page: 69
  year: 2015
  end-page: 77
  ident: b0150
  article-title: Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper
  publication-title: Electrochim. Acta
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  ident: b0060
  article-title: Reticular synthesis and the design of new materials
  publication-title: Nature
– volume: 34
  start-page: 205
  year: 2017
  end-page: 214
  ident: b0155
  article-title: POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage
  publication-title: Nano Energy
– volume: 25
  start-page: 957
  year: 2014
  end-page: 961
  ident: b0230
  article-title: Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors
  publication-title: Chin. Chem. Lett.
– volume: 28
  start-page: 3646
  year: 2016
  end-page: 3652
  ident: b0255
  article-title: A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode
  publication-title: Adv. Mater.
– volume: 48
  start-page: 7259
  year: 2012
  ident: b0095
  article-title: Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes
  publication-title: Chem. Commun.
– volume: 6
  start-page: 49478
  year: 2016
  end-page: 49486
  ident: b0200
  article-title: MOF-derived Ni
  publication-title: RSC Adv.
– volume: 8
  start-page: 1837
  year: 2015
  end-page: 1866
  ident: b0105
  article-title: Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion
  publication-title: Energy Environ. Sci.
– volume: 518
  start-page: 57
  year: 2018
  end-page: 68
  ident: b0145
  article-title: Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor
  publication-title: J. Colloid Interface Sci.
– volume: 211
  start-page: 595
  year: 2016
  end-page: 602
  ident: b0195
  article-title: Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor
  publication-title: Electrochim. Acta
– volume: 58
  start-page: 1189
  year: 2016
  end-page: 1206
  ident: b0030
  article-title: Review on supercapacitors: technologies and materials
  publication-title: Renew. Sustain. Energy Rev.
– volume: 28
  start-page: 12747
  year: 2017
  end-page: 12754
  ident: b0020
  article-title: One-step hydrothermal synthesis of Ni
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 10
  start-page: 377
  year: 2015
  end-page: 386
  ident: b0175
  article-title: Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage
  publication-title: ACS Nano
– volume: 226
  start-page: 69
  year: 2017
  end-page: 78
  ident: b0010
  article-title: Facile synthesis of Ni
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 246
  year: 2016
  ident: b0245
  article-title: An effective electrodeposition mode for porous MnO
  publication-title: Materials
– volume: 23
  start-page: 631
  year: 2017
  end-page: 636
  ident: b0140
  article-title: Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode
  publication-title: Chem.-Eur. J.
– volume: 31
  start-page: 311
  year: 2017
  end-page: 321
  ident: b0050
  article-title: A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading
  publication-title: Nano Energy
– volume: 53
  start-page: 6807
  year: 2018
  end-page: 6818
  ident: b0085
  article-title: Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors
  publication-title: J. Mater. Sci.
– volume: 27
  start-page: 4794
  year: 2016
  end-page: 4799
  ident: b0185
  article-title: Simple, novel and low-temperature synthesis of rod-like NiO nanostructure via thermal decomposition route using a new starting reagent and its photocatalytic activity assessment
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 1
  start-page: 1182
  year: 2014
  end-page: 1188
  ident: b0110
  article-title: A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe)
  publication-title: ChemCatChem
– volume: 29
  start-page: 2477
  year: 2018
  end-page: 2483
  ident: b0215
  article-title: Facile synthesis of nickel metal-organic framework derived hexagonal flaky NiO for supercapacitors
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 4
  start-page: 13344
  year: 2016
  end-page: 13351
  ident: b0130
  article-title: Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid deceives
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 2788
  year: 2017
  end-page: 2795
  ident: b0090
  article-title: High-performance energy storage and conversion materials derived from a single metal organic framework/graphene aerogel composite
  publication-title: Nano Lett.
– volume: 111
  start-page: 185
  year: 2012
  end-page: 190
  ident: b0040
  article-title: Activated carbons from KOH-activation of argan (
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 4585
  year: 2016
  end-page: 4591
  ident: b0120
  article-title: Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material
  publication-title: ACS Appl. Mater. Interface
– volume: 13
  start-page: 1603102
  year: 2017
  ident: b0015
  article-title: MOF-derived hollow cage Ni
  publication-title: Small
– volume: 28
  start-page: 1298
  year: 2016
  end-page: 1303
  ident: b0070
  article-title: Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal-organic framework
  publication-title: Chem. Mater.
– volume: 5
  start-page: 23744
  year: 2017
  end-page: 23752
  ident: b0160
  article-title: Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 14019
  year: 2017
  end-page: 14025
  ident: b0225
  article-title: Cobalt oxide composites derived from zeolitic imidazolate on carbon fiber paper as a binder-free anode for supercapacitor
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 4
  start-page: 19078
  year: 2016
  end-page: 19085
  ident: b0135
  article-title: Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 537
  year: 2016
  end-page: 547
  ident: b0190
  article-title: Synthesis of Cu-BTC, from Cu and benzene-1,3,5-tricarboxylic acid (H
  publication-title: Green Process. Synth.
– volume: 184
  start-page: 4107
  year: 2017
  end-page: 4115
  ident: b0170
  article-title: Waxberry-like magnetic porous carbon composites prepared from a nickel-organic framework for solid-phase extraction of fluoroquinolones
  publication-title: Microchimica Acta
– volume: 9
  start-page: 19831
  year: 2017
  end-page: 19842
  ident: b0035
  article-title: Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film
  publication-title: ACS Appl. Mater. Interface
– volume: 2
  start-page: 16640
  year: 2014
  end-page: 16644
  ident: b0115
  article-title: Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 65406
  year: 2017
  ident: b0235
  article-title: Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors
  publication-title: Nanotechnology
– volume: 26
  start-page: 66
  year: 2016
  end-page: 73
  ident: b0125
  article-title: Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study
  publication-title: Nano Energy
– volume: 39
  start-page: 337
  year: 2017
  end-page: 345
  ident: b0210
  article-title: Highly stable 3D porous heterostructures with hierarchically-coordinated octahedral transition metals for enhanced performance supercapacitors
  publication-title: Nano Energy
– volume: 170
  start-page: 266
  year: 2016
  end-page: 275
  ident: b0250
  article-title: Fabrication of two-dimensional reduced graphene oxide supported V
  publication-title: Mater. Chem. Phys.
– volume: 5
  start-page: 1094
  year: 2017
  end-page: 1102
  ident: b0180
  article-title: Mixed-metallic MOFs based electrode materials for high performance hybrid supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 1081
  year: 2013
  end-page: 1089
  ident: b0025
  article-title: Structure and electrochemical performance of carbide-derived carbon nanopowders
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 3595
  year: 2010
  end-page: 3602
  ident: b0045
  article-title: Anchoring hydrous RuO
  publication-title: Adv. Funct. Mater.
– volume: 1127
  start-page: 583
  year: 2017
  end-page: 589
  ident: b0080
  article-title: A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties
  publication-title: J. Mol. Struct.
– volume: 50
  start-page: 1519
  year: 2014
  ident: b0100
  article-title: From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage
  publication-title: Chem. Commun.
– volume: 159
  start-page: A651
  year: 2012
  end-page: A656
  ident: b0240
  article-title: Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors
  publication-title: J. Electrochem. Soc.
– volume: 5
  year: 2015
  ident: b0055
  article-title: NiCo
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  ident: b0005
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
– volume: 8
  start-page: 4585
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0120
  article-title: Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.5b10781
– volume: 17
  start-page: 2788
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0090
  article-title: High-performance energy storage and conversion materials derived from a single metal organic framework/graphene aerogel composite
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05004
– volume: 53
  start-page: 6807
  year: 2018
  ident: 10.1016/j.jcis.2018.07.044_b0085
  article-title: Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2005-1
– volume: 25
  start-page: 957
  year: 2014
  ident: 10.1016/j.jcis.2018.07.044_b0230
  article-title: Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2014.05.032
– volume: 518
  start-page: 57
  year: 2018
  ident: 10.1016/j.jcis.2018.07.044_b0145
  article-title: Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.02.010
– volume: 28
  start-page: 3646
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0255
  article-title: A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600689
– volume: 20
  start-page: 3595
  year: 2010
  ident: 10.1016/j.jcis.2018.07.044_b0045
  article-title: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201001054
– volume: 267
  start-page: 888
  year: 2014
  ident: 10.1016/j.jcis.2018.07.044_b0205
  article-title: Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.134
– volume: 1127
  start-page: 583
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0080
  article-title: A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2016.08.013
– volume: 28
  start-page: 12747
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0020
  article-title: One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 31
  start-page: 311
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0050
  article-title: A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.024
– volume: 170
  start-page: 266
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0250
  article-title: Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.12.051
– volume: 48
  start-page: 7259
  year: 2012
  ident: 10.1016/j.jcis.2018.07.044_b0095
  article-title: Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33433j
– volume: 5
  year: 2015
  ident: 10.1016/j.jcis.2018.07.044_b0055
  article-title: NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400977
– volume: 1
  start-page: 1182
  year: 2014
  ident: 10.1016/j.jcis.2018.07.044_b0110
  article-title: A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe)
  publication-title: ChemCatChem
– volume: 28
  start-page: 1298
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0070
  article-title: Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal-organic framework
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04075
– volume: 8
  start-page: 1837
  year: 2015
  ident: 10.1016/j.jcis.2018.07.044_b0105
  article-title: Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00762C
– volume: 6
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0065
  article-title: Metal organic framework-derived metal phosphates as electrode materials for supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501833
– volume: 5
  start-page: 1094
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0180
  article-title: Mixed-metallic MOFs based electrode materials for high performance hybrid supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09805C
– volume: 27
  start-page: 4794
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0185
  article-title: Simple, novel and low-temperature synthesis of rod-like NiO nanostructure via thermal decomposition route using a new starting reagent and its photocatalytic activity assessment
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 58
  start-page: 1189
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0030
  article-title: Review on supercapacitors: technologies and materials
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.249
– volume: 7
  start-page: 25396
  year: 2015
  ident: 10.1016/j.jcis.2018.07.044_b0220
  article-title: Template synthesis of shape-tailorable NiS2 hollow prisms as high-performance supercapacitor materials
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.5b07941
– volume: 423
  start-page: 705
  year: 2003
  ident: 10.1016/j.jcis.2018.07.044_b0060
  article-title: Reticular synthesis and the design of new materials
  publication-title: Nature
  doi: 10.1038/nature01650
– volume: 5
  start-page: 23744
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0160
  article-title: Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07464F
– volume: 39
  start-page: 337
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0210
  article-title: Highly stable 3D porous heterostructures with hierarchically-coordinated octahedral transition metals for enhanced performance supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.010
– volume: 226
  start-page: 69
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0010
  article-title: Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.184
– volume: 2
  start-page: 16640
  year: 2014
  ident: 10.1016/j.jcis.2018.07.044_b0115
  article-title: Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04140B
– volume: 13
  start-page: 1603102
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0015
  article-title: MOF-derived hollow cage NixCo3−xO4 and their synergy with graphene for outstanding supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201603102
– volume: 184
  start-page: 4107
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0170
  article-title: Waxberry-like magnetic porous carbon composites prepared from a nickel-organic framework for solid-phase extraction of fluoroquinolones
  publication-title: Microchimica Acta
  doi: 10.1007/s00604-017-2438-2
– volume: 23
  start-page: 1081
  year: 2013
  ident: 10.1016/j.jcis.2018.07.044_b0025
  article-title: Structure and electrochemical performance of carbide-derived carbon nanopowders
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200695
– volume: 28
  start-page: 65406
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0235
  article-title: Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/28/6/065406
– volume: 10
  start-page: 377
  year: 2015
  ident: 10.1016/j.jcis.2018.07.044_b0175
  article-title: Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05041
– volume: 7
  start-page: 845
  year: 2008
  ident: 10.1016/j.jcis.2018.07.044_b0005
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 4
  start-page: 19078
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0135
  article-title: Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08331E
– volume: 8
  start-page: 718
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0075
  article-title: Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2515
– volume: 26
  start-page: 66
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0125
  article-title: Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.003
– volume: 23
  start-page: 631
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0140
  article-title: Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode
  publication-title: Chem.-Eur. J.
  doi: 10.1002/chem.201604071
– volume: 159
  start-page: A651
  year: 2012
  ident: 10.1016/j.jcis.2018.07.044_b0240
  article-title: Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.074205jes
– volume: 4
  start-page: 13344
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0130
  article-title: Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid deceives
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05384J
– volume: 5
  start-page: 537
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0190
  article-title: Synthesis of Cu-BTC, from Cu and benzene-1,3,5-tricarboxylic acid (H3BTC), by a green electrochemical method
  publication-title: Green Process. Synth.
– volume: 34
  start-page: 205
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0155
  article-title: POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.028
– volume: 211
  start-page: 595
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0195
  article-title: Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.090
– volume: 157
  start-page: 69
  year: 2015
  ident: 10.1016/j.jcis.2018.07.044_b0150
  article-title: Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.082
– volume: 2
  start-page: 19005
  year: 2014
  ident: 10.1016/j.jcis.2018.07.044_b0165
  article-title: Zn-doped Ni-MOF material with a high supercapacitive performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04346D
– volume: 29
  start-page: 2477
  year: 2018
  ident: 10.1016/j.jcis.2018.07.044_b0215
  article-title: Facile synthesis of nickel metal-organic framework derived hexagonal flaky NiO for supercapacitors
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 28
  start-page: 14019
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0225
  article-title: Cobalt oxide composites derived from zeolitic imidazolate on carbon fiber paper as a binder-free anode for supercapacitor
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 111
  start-page: 185
  year: 2012
  ident: 10.1016/j.jcis.2018.07.044_b0040
  article-title: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.02.010
– volume: 9
  start-page: 19831
  year: 2017
  ident: 10.1016/j.jcis.2018.07.044_b0035
  article-title: Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.7b03786
– volume: 50
  start-page: 1519
  year: 2014
  ident: 10.1016/j.jcis.2018.07.044_b0100
  article-title: From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC48112C
– volume: 9
  start-page: 246
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0245
  article-title: An effective electrodeposition mode for porous MnO2/Ni foam composite for asymmetric supercapacitors
  publication-title: Materials
  doi: 10.3390/ma9040246
– volume: 6
  start-page: 49478
  year: 2016
  ident: 10.1016/j.jcis.2018.07.044_b0200
  article-title: MOF-derived NixCo1−x(OH)2 composite microspheres for high-performance supercapacitors
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03992H
SSID ssj0011559
Score 2.6665301
Snippet [Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in...
Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms capacitance
carbon
cobalt
coordination polymers
electrochemistry
electrodes
hot water treatment
Ni-MOF
Ni/Co-MOF
nickel
specific energy
Supercapacitors
Title Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors
URI https://dx.doi.org/10.1016/j.jcis.2018.07.044
https://www.ncbi.nlm.nih.gov/pubmed/30025331
https://www.proquest.com/docview/2073318416
https://www.proquest.com/docview/2116869586
Volume 531
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9gAcUFu-CrQyEjdkdp117ORYLVQLiJ6o1JsVj8dSypKu6O6V385MnCxw6B44OhpHlmc88xLPvBHibRGiLYIB1YQpKOMSqBCrpOhDDKdlk1Lo6Yu_XtrFlfl8XV7viflYC8NplYPvzz6999bDk8mwm5NV23KNL502V5NznfWwhyvYjWMrf_9rm-ah-dotp3loxdJD4UzO8bqBlim7ddUTeBpzX3C6D3z2QejiUDwe0KM8zws8EnvYHYsH87Fp27F49Be_4BNx94F_ES9p69Wy_Y6ya-nMLifAHCBr-QMJeKvc1glkGrO0JAe2KIf-OBElYdpsppIArmR-Y7n6U24g7zY0Aoq50HLnnqfi6uLjt_lCDV0WFJi6WCsAcMZyF_RgAxqOTw7BJgMOQ7KxamgQG4KFDs006FmKLoSSgpwzOKPA90zsd7cdvhAyldFqiyaUoTYFpFBgAI11ciW6iOZE6HF7PQwU5NwJY-nHXLMbzyrxrBI_dZ5UciLebeesMgHHTuly1Jr_x4w8RYid896MKvakMb40aTq83bAQd7Xky9kdMlrbytZlRTLPs31s1zpjVElvePmfK3slHvIoZ9C8Fvvrnxs8JRy0Dme9oZ-Jg_NPXxaXvwGhPAqf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69NDtMGzdq3tqwG6DkNjRwz4W2Yp0bXNqgd4E6wW4zdxgTf7_SEvOtkNz2NE2ZQgiJX42yY8AX0rrVWmF442dOC50dNz6KnL8EAsT2cRoe_rii4WaX4kf1_J6D2ZDLQylVeazP53p_Wmd74zzao5XbUs1vrjbdI2H67SHPY9gn9ip5Aj2j0_P5ottMIEibynTo-A0INfOpDSvG9cSa3dR9RyeQjzknx7Cn70fOnkGTzOAZMdpjs9hL3SHcDAb-rYdwpO_KAZfwP03-ku8xNXny_Y2sK7FbbscO6IBWbOfAbE3T52dHItDohYj3-ZZbpHjA0NYmyyVIcZlRHHMVn8qDtj9Bq8cul3XUvOel3B18v1yNue50QJ3oi7X3DmnhaJG6FbZIMhF6eBUFE4HG5WvGrzwDSJDHcTEFtPotbUS_ZwWYYq-7xWMursuvAEWpVeFCsJKW4vSRVsG64pQRy2D9kEcQTEsr3GZhZyaYSzNkG52Y0glhlRiJtqgSo7g63bMKnFw7JSWg9bMP5Zk0EnsHPd5ULFBjVHcpOnC3YaEqLElxWd3yBSFqlQtK5R5nexjO9cpAUt8w9v_nNknOJhfXpyb89PF2Tt4TE9SQs17GK1_bcIHhEVr-zGb_W-1IA1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dandelion-like+nickel%2Fcobalt+metal-organic+framework+based+electrode+materials+for+high+performance+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Gao%2C+Shuwen&rft.au=Sui%2C+Yanwei&rft.au=Wei%2C+Fuxiang&rft.au=Qi%2C+Jiqiu&rft.date=2018-12-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=531&rft.spage=83&rft_id=info:doi/10.1016%2Fj.jcis.2018.07.044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon