Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors
[Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hyd...
Saved in:
Published in | Journal of colloid and interface science Vol. 531; pp. 83 - 90 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g−1 at 1 A g−1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g−1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg−1 at the power density of 800 W kg−1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs. |
---|---|
AbstractList | Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni
and Co
, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g
at 1 A g
in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g
) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg
at the power density of 800 W kg
. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs. [Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g−1 at 1 A g−1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g−1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg−1 at the power density of 800 W kg−1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs. Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g-1 at 1 A g-1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g-1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg-1 at the power density of 800 W kg-1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g-1 at 1 A g-1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g-1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg-1 at the power density of 800 W kg-1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs. Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g−1 at 1 A g−1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g−1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg−1 at the power density of 800 W kg−1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs. |
Author | Gao, Shuwen Wei, Fuxiang Meng, Qingkun Ren, Yaojian Qi, Jiqiu He, Yezeng Sui, Yanwei |
Author_xml | – sequence: 1 givenname: Shuwen surname: Gao fullname: Gao, Shuwen – sequence: 2 givenname: Yanwei surname: Sui fullname: Sui, Yanwei – sequence: 3 givenname: Fuxiang surname: Wei fullname: Wei, Fuxiang – sequence: 4 givenname: Jiqiu surname: Qi fullname: Qi, Jiqiu – sequence: 5 givenname: Qingkun surname: Meng fullname: Meng, Qingkun – sequence: 6 givenname: Yaojian surname: Ren fullname: Ren, Yaojian – sequence: 7 givenname: Yezeng surname: He fullname: He, Yezeng email: hyz0217@hotmail.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30025331$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEYhompsdvqH_BgOHqZKcwwMJN4MdVWkyZe9Ew-4JuWXWZYgdX472Wz1YOHeoIPnpeE97kgZ2tckZDXnLWccXm1bbfW57ZjfGyZapkQz8iGs2loFGf9Gdkw1vFmUpM6Jxc5bxnjfBimF-S8rzdD3_MNyR9gdRh8XJvgd0hXb3cYrmw0EApdsEBoYrqHek7nBAv-jGlHDWR0FAPakqJDukDB5CFkOsdEH_z9A91jqvsFVos0H-pkYQ_Wl5jyS_J8riy-elwvybebj1-vPzV3X24_X7-_a6yYutJYa5WQXPSjkQaF6KZJoZWzsArNLN0IdXBQ_6FQMMP72SljBqlGJbDnXX9J3p7e3af4_YC56MVniyHAivGQdce5HOU0jPL_KFO1rlHwI_rmET2YBZ3eJ79A-qX_dFqB7gTYFHNOOP9FONNHcXqrj-L0UZxmSldxNTT-E6pdQaleSgIfno6-O0WxdvnDY9LZeqy9O5-qIO2ifyr-G8XgtZU |
CitedBy_id | crossref_primary_10_1016_j_inoche_2025_114110 crossref_primary_10_1039_D2DT03872B crossref_primary_10_1002_celc_202200036 crossref_primary_10_1016_j_apsusc_2019_144395 crossref_primary_10_1002_zaac_201900035 crossref_primary_10_1016_j_talanta_2022_123596 crossref_primary_10_1007_s40710_024_00718_2 crossref_primary_10_1021_acs_langmuir_4c02052 crossref_primary_10_1021_acs_energyfuels_4c03831 crossref_primary_10_1016_j_electacta_2024_144856 crossref_primary_10_1016_j_cclet_2022_107787 crossref_primary_10_1016_j_est_2024_112676 crossref_primary_10_1016_j_pnsc_2019_08_014 crossref_primary_10_1021_acsaem_0c00393 crossref_primary_10_1016_j_apsusc_2021_150324 crossref_primary_10_1016_j_jpowsour_2024_235506 crossref_primary_10_1016_j_apsusc_2020_145260 crossref_primary_10_1016_j_cej_2022_137368 crossref_primary_10_1021_acs_langmuir_4c04908 crossref_primary_10_1016_j_electacta_2021_138684 crossref_primary_10_1021_acsaem_1c00230 crossref_primary_10_1039_C9DT04522H crossref_primary_10_1016_j_jallcom_2023_172512 crossref_primary_10_1007_s00339_022_06095_7 crossref_primary_10_1007_s41918_019_00055_1 crossref_primary_10_1016_j_cclet_2024_110397 crossref_primary_10_1016_j_inoche_2024_112575 crossref_primary_10_1016_j_inoche_2022_109391 crossref_primary_10_1016_j_jcis_2022_04_126 crossref_primary_10_1002_ente_202301160 crossref_primary_10_1007_s11051_019_4624_0 crossref_primary_10_1016_j_jpowsour_2022_231029 crossref_primary_10_1016_j_est_2022_106317 crossref_primary_10_1016_j_jpowsour_2023_233968 crossref_primary_10_1016_j_jcis_2020_04_127 crossref_primary_10_1002_sstr_202100115 crossref_primary_10_1016_j_mtla_2024_102021 crossref_primary_10_1039_D3QI00123G crossref_primary_10_1016_j_solmat_2022_112019 crossref_primary_10_1016_j_electacta_2021_138434 crossref_primary_10_1016_j_jallcom_2024_173557 crossref_primary_10_1016_j_electacta_2021_138433 crossref_primary_10_1016_j_jallcom_2024_174648 crossref_primary_10_1039_D1TA00652E crossref_primary_10_1016_j_electacta_2024_144609 crossref_primary_10_1088_1361_6528_ac17c2 crossref_primary_10_1016_j_cep_2020_108232 crossref_primary_10_1039_D4SM01139B crossref_primary_10_1021_acsaem_2c03026 crossref_primary_10_1002_smll_202300054 crossref_primary_10_1021_acs_cgd_1c01109 crossref_primary_10_1016_j_jallcom_2020_156312 crossref_primary_10_1007_s10854_023_11286_w crossref_primary_10_1007_s10854_020_03597_z crossref_primary_10_1016_j_apsusc_2023_156533 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1002_cssc_202100116 crossref_primary_10_1016_j_ijhydene_2022_11_084 crossref_primary_10_1016_j_colsurfa_2022_130683 crossref_primary_10_1007_s00339_024_08019_z crossref_primary_10_1016_j_apsusc_2020_146920 crossref_primary_10_1016_j_fuel_2024_133805 crossref_primary_10_1016_j_jallcom_2022_167413 crossref_primary_10_1016_j_ccr_2020_213660 crossref_primary_10_1021_acsanm_0c01062 crossref_primary_10_1039_D0CY01019G crossref_primary_10_1016_j_est_2024_113300 crossref_primary_10_1021_acs_energyfuels_4c05687 crossref_primary_10_1016_j_materresbull_2023_112320 crossref_primary_10_1021_acsomega_3c02559 crossref_primary_10_1039_D1DT03113A crossref_primary_10_1016_j_cej_2019_122982 crossref_primary_10_1016_j_microc_2021_106927 crossref_primary_10_1016_j_est_2021_103302 crossref_primary_10_1016_j_est_2021_103303 crossref_primary_10_1016_j_est_2022_106537 crossref_primary_10_1016_j_mtchem_2023_101754 crossref_primary_10_1021_acs_iecr_8b03898 crossref_primary_10_1016_j_est_2023_107817 crossref_primary_10_1016_j_ccr_2025_216547 crossref_primary_10_1016_j_colsurfa_2021_127665 crossref_primary_10_1016_j_diamond_2024_111484 crossref_primary_10_1016_j_apsadv_2020_100054 crossref_primary_10_1021_acs_cgd_0c00601 crossref_primary_10_1007_s11581_021_03954_w crossref_primary_10_1021_acs_inorgchem_4c05496 crossref_primary_10_1016_j_jelechem_2023_117266 crossref_primary_10_1021_acs_energyfuels_1c01722 crossref_primary_10_1021_acs_iecr_1c02530 crossref_primary_10_1002_est2_543 crossref_primary_10_1016_j_jcis_2024_09_074 crossref_primary_10_1016_j_susmat_2023_e00588 crossref_primary_10_2139_ssrn_4072314 crossref_primary_10_1021_acssuschemeng_9b06590 crossref_primary_10_1002_sstr_202100200 crossref_primary_10_1016_j_jelechem_2021_114993 crossref_primary_10_1016_j_compositesb_2021_108624 crossref_primary_10_1016_j_apsusc_2021_150929 crossref_primary_10_1007_s10854_019_02163_6 crossref_primary_10_1016_j_est_2021_103082 crossref_primary_10_1002_smll_202107284 crossref_primary_10_1088_1361_6528_ac6ff2 crossref_primary_10_1016_j_jallcom_2022_167354 crossref_primary_10_1016_j_jcis_2022_07_136 crossref_primary_10_1021_acs_inorgchem_4c04771 crossref_primary_10_1016_j_synthmet_2021_116775 crossref_primary_10_1016_j_jcis_2024_07_018 crossref_primary_10_1021_acsomega_1c03377 crossref_primary_10_1016_j_ceramint_2020_11_088 crossref_primary_10_3390_molecules30030513 crossref_primary_10_1007_s10854_019_02759_y crossref_primary_10_1021_acs_inorgchem_9b02762 crossref_primary_10_1002_ange_202100123 crossref_primary_10_1016_j_jcis_2021_05_002 crossref_primary_10_1021_acsami_9b11994 crossref_primary_10_1039_D0QM00597E crossref_primary_10_1002_adfm_202312692 crossref_primary_10_1016_j_jallcom_2024_176991 crossref_primary_10_1007_s11051_021_05318_x crossref_primary_10_1016_j_materresbull_2022_111996 crossref_primary_10_1016_j_colsurfa_2022_128954 crossref_primary_10_1002_er_6618 crossref_primary_10_1557_s43579_023_00501_8 crossref_primary_10_1002_eom2_12106 crossref_primary_10_1016_j_jallcom_2022_165982 crossref_primary_10_1007_s10854_023_10246_8 crossref_primary_10_1039_C8TA11948A crossref_primary_10_1016_j_apsusc_2021_151344 crossref_primary_10_1016_j_ijhydene_2020_04_044 crossref_primary_10_1016_j_diamond_2021_108358 crossref_primary_10_1016_j_est_2024_111670 crossref_primary_10_1039_D2TA03074H crossref_primary_10_1007_s10904_022_02503_w crossref_primary_10_1016_j_seppur_2023_123101 crossref_primary_10_1021_acs_energyfuels_3c04598 crossref_primary_10_1021_acsaelm_3c01170 crossref_primary_10_1016_j_jece_2020_104986 crossref_primary_10_1039_C9DT03306H crossref_primary_10_1007_s11581_024_05918_2 crossref_primary_10_1021_acsanm_0c01419 crossref_primary_10_1007_s10854_021_05529_x crossref_primary_10_1021_acsanm_0c02507 crossref_primary_10_3390_molecules28145613 crossref_primary_10_1002_slct_202400106 crossref_primary_10_1021_acsanm_3c01897 crossref_primary_10_1007_s10854_020_03203_2 crossref_primary_10_1039_D4NJ05024J crossref_primary_10_1016_j_ccr_2020_213341 crossref_primary_10_1002_smll_202203702 crossref_primary_10_1016_j_ceramint_2020_11_190 crossref_primary_10_1016_j_apsusc_2020_148354 crossref_primary_10_1021_acsanm_3c02859 crossref_primary_10_1016_j_synthmet_2021_116753 crossref_primary_10_1016_j_materresbull_2024_112681 crossref_primary_10_1039_D4CC04086D crossref_primary_10_1007_s11426_024_2374_0 crossref_primary_10_1039_C9TA09896H crossref_primary_10_1016_j_est_2021_103627 crossref_primary_10_1016_j_ijhydene_2025_01_208 crossref_primary_10_1016_j_jelechem_2022_116885 crossref_primary_10_1021_acs_inorgchem_2c00082 crossref_primary_10_1039_C9NJ05198H crossref_primary_10_1016_j_ceramint_2024_09_332 crossref_primary_10_1016_j_est_2021_103176 crossref_primary_10_1016_j_microc_2021_106229 crossref_primary_10_1039_D0DT01676D crossref_primary_10_1021_acs_inorgchem_4c02479 crossref_primary_10_1016_j_apsusc_2020_146954 crossref_primary_10_1002_jccs_202000314 crossref_primary_10_1016_j_est_2025_115545 crossref_primary_10_1007_s10854_019_02516_1 crossref_primary_10_1021_acsomega_0c01053 crossref_primary_10_1002_smll_202306616 crossref_primary_10_1002_anie_202100123 crossref_primary_10_1016_j_ijoes_2023_100053 crossref_primary_10_1142_S1793292019500887 crossref_primary_10_1557_jmr_2020_93 crossref_primary_10_1039_D2NJ04080H crossref_primary_10_1016_j_est_2023_108663 crossref_primary_10_1016_j_est_2023_107213 crossref_primary_10_1039_D0NJ02414G crossref_primary_10_1039_D0NR02016H crossref_primary_10_1016_j_synthmet_2019_116262 crossref_primary_10_1016_j_colsurfa_2021_127012 crossref_primary_10_1016_j_apsusc_2019_145089 crossref_primary_10_1007_s11581_020_03649_8 crossref_primary_10_1016_j_jallcom_2018_12_023 crossref_primary_10_1016_j_electacta_2020_135617 crossref_primary_10_1016_j_est_2022_106395 crossref_primary_10_1016_j_cej_2023_146638 crossref_primary_10_1021_acsanm_3c05513 crossref_primary_10_1002_admi_202100642 crossref_primary_10_1088_1361_6528_ab991d crossref_primary_10_1021_acsaem_4c00919 crossref_primary_10_1039_D0RA08982F crossref_primary_10_3390_ma13214870 crossref_primary_10_1016_j_jallcom_2020_158205 crossref_primary_10_1002_adem_202400378 crossref_primary_10_1007_s00339_023_07257_x crossref_primary_10_1016_j_est_2023_109264 crossref_primary_10_1016_j_jallcom_2021_163070 crossref_primary_10_1016_j_jelechem_2022_116860 crossref_primary_10_1016_j_fuel_2024_131686 crossref_primary_10_1016_j_mtsust_2024_101049 crossref_primary_10_1016_j_est_2021_103155 crossref_primary_10_1016_j_matchemphys_2024_129326 crossref_primary_10_1002_aesr_202100024 crossref_primary_10_1007_s10854_019_02304_x crossref_primary_10_1016_j_jssc_2022_123549 crossref_primary_10_3390_ma16062423 crossref_primary_10_1016_j_jcis_2020_04_083 crossref_primary_10_1186_s11671_020_03321_0 crossref_primary_10_1002_asia_202300859 crossref_primary_10_1016_j_ceramint_2021_05_225 crossref_primary_10_1016_j_est_2024_112280 crossref_primary_10_1039_D1MA00719J crossref_primary_10_1039_D2RA04939B crossref_primary_10_1016_j_cej_2020_128269 crossref_primary_10_1002_asia_202200685 crossref_primary_10_1016_j_est_2022_104993 crossref_primary_10_1016_j_synthmet_2019_116215 crossref_primary_10_1016_j_jcis_2021_10_089 crossref_primary_10_1002_celc_201900687 crossref_primary_10_1007_s10853_021_06187_4 crossref_primary_10_1016_j_est_2023_109164 crossref_primary_10_1021_acs_inorgchem_0c01157 crossref_primary_10_1016_j_jallcom_2023_170038 crossref_primary_10_1039_D1TA02850B crossref_primary_10_1088_1361_6528_ab80fb crossref_primary_10_1016_j_cej_2021_129993 crossref_primary_10_1021_acsami_4c09616 crossref_primary_10_1016_j_jelechem_2023_117895 crossref_primary_10_1007_s12274_023_6265_y crossref_primary_10_1016_j_ceramint_2022_11_105 crossref_primary_10_1007_s12274_022_4902_5 crossref_primary_10_1016_j_electacta_2020_136124 crossref_primary_10_1016_j_est_2021_102611 crossref_primary_10_1021_acsami_1c15824 crossref_primary_10_1016_j_mseb_2021_115136 crossref_primary_10_1016_j_mtchem_2024_102197 crossref_primary_10_1002_smll_202311449 crossref_primary_10_1088_1402_4896_ad92c1 crossref_primary_10_1016_j_jssc_2019_07_019 crossref_primary_10_1007_s10854_021_06177_x crossref_primary_10_1016_j_est_2021_102968 crossref_primary_10_1021_acs_inorgchem_1c03316 crossref_primary_10_1021_acs_energyfuels_1c03624 crossref_primary_10_1016_j_ceramint_2021_03_059 crossref_primary_10_1016_j_apsusc_2020_146080 crossref_primary_10_1016_j_mattod_2021_03_011 crossref_primary_10_1142_S1793292019500322 crossref_primary_10_1016_j_jpowsour_2020_229444 crossref_primary_10_1002_ente_202100350 crossref_primary_10_1016_j_est_2020_102149 crossref_primary_10_20964_2020_06_55 crossref_primary_10_1016_j_jssc_2022_123056 crossref_primary_10_1002_slct_201900305 crossref_primary_10_1039_D2NJ00957A crossref_primary_10_1016_j_apsusc_2019_04_195 crossref_primary_10_1016_j_synthmet_2021_116929 crossref_primary_10_1016_j_jcis_2019_06_031 crossref_primary_10_1088_2632_959X_abf8c2 crossref_primary_10_1016_j_cplett_2024_141474 crossref_primary_10_1016_j_matchemphys_2023_127877 crossref_primary_10_1039_D4QI02743D crossref_primary_10_1016_j_matlet_2022_131804 crossref_primary_10_1021_acs_jpcc_4c02187 crossref_primary_10_1016_j_enchem_2019_100025 crossref_primary_10_1016_j_synthmet_2021_116931 crossref_primary_10_1016_j_ijhydene_2020_09_004 crossref_primary_10_1021_acsanm_1c00522 crossref_primary_10_1039_D2NJ05481G crossref_primary_10_1016_j_est_2021_102718 crossref_primary_10_1016_j_compositesb_2020_107767 crossref_primary_10_1002_cnl2_128 crossref_primary_10_1016_j_jcis_2018_12_095 crossref_primary_10_1016_j_est_2022_105700 crossref_primary_10_1016_j_jpcs_2021_110336 crossref_primary_10_1016_j_electacta_2020_135828 crossref_primary_10_1016_j_est_2023_106869 crossref_primary_10_1016_j_jcis_2019_07_063 crossref_primary_10_1021_acsaem_8b02128 crossref_primary_10_1039_C9NJ05503G crossref_primary_10_1016_j_electacta_2020_135826 crossref_primary_10_1016_j_matchemphys_2021_124530 crossref_primary_10_1007_s13204_019_01233_9 crossref_primary_10_1515_ntrev_2022_0042 crossref_primary_10_1557_s43578_022_00567_5 crossref_primary_10_1016_j_jssc_2019_121084 crossref_primary_10_1021_acs_iecr_0c05516 crossref_primary_10_1016_j_est_2024_114780 crossref_primary_10_1016_j_jsamd_2021_07_007 crossref_primary_10_1002_admi_202201431 crossref_primary_10_1016_j_molliq_2022_119319 crossref_primary_10_1016_j_jpowsour_2019_04_016 crossref_primary_10_1016_j_est_2023_107711 crossref_primary_10_1039_D2NJ03342A crossref_primary_10_1021_acs_inorgchem_2c03879 crossref_primary_10_3390_cryst13111593 crossref_primary_10_1016_j_diamond_2023_110281 crossref_primary_10_1016_j_est_2021_103907 crossref_primary_10_1021_acsaem_2c01635 crossref_primary_10_1039_D3RA07788H crossref_primary_10_1002_chem_202400157 crossref_primary_10_1021_acsanm_2c01488 crossref_primary_10_1016_j_jallcom_2020_154069 crossref_primary_10_1007_s11664_023_10229_9 crossref_primary_10_1002_aenm_202100321 crossref_primary_10_1007_s10800_023_01888_x crossref_primary_10_1016_j_jssc_2022_122994 crossref_primary_10_3390_polym17020130 crossref_primary_10_1007_s10854_020_04174_0 crossref_primary_10_1016_j_cej_2024_155240 crossref_primary_10_1002_flm2_32 crossref_primary_10_1088_2053_1591_ab8d5d crossref_primary_10_1088_1361_6528_ac4eb1 crossref_primary_10_1016_j_jallcom_2024_176007 crossref_primary_10_1016_j_jpowsour_2024_234423 crossref_primary_10_1016_j_est_2022_104729 crossref_primary_10_1016_j_apsusc_2019_06_238 crossref_primary_10_1016_j_cis_2023_103022 crossref_primary_10_1021_acsanm_4c05704 crossref_primary_10_1002_tcr_202200055 crossref_primary_10_1016_j_colsurfa_2024_134814 crossref_primary_10_1016_j_jssc_2018_11_038 crossref_primary_10_1016_j_est_2023_106766 |
Cites_doi | 10.1021/acsami.5b10781 10.1021/acs.nanolett.6b05004 10.1007/s10853-018-2005-1 10.1016/j.cclet.2014.05.032 10.1016/j.jcis.2018.02.010 10.1002/adma.201600689 10.1002/adfm.201001054 10.1016/j.jpowsour.2014.05.134 10.1016/j.molstruc.2016.08.013 10.1016/j.nanoen.2016.11.024 10.1016/j.matchemphys.2015.12.051 10.1039/c2cc33433j 10.1002/aenm.201400977 10.1021/acs.chemmater.5b04075 10.1039/C5EE00762C 10.1002/aenm.201501833 10.1039/C6TA09805C 10.1016/j.rser.2015.12.249 10.1021/acsami.5b07941 10.1038/nature01650 10.1039/C7TA07464F 10.1016/j.nanoen.2017.07.010 10.1016/j.electacta.2016.12.184 10.1039/C4TA04140B 10.1002/smll.201603102 10.1007/s00604-017-2438-2 10.1002/adfm.201200695 10.1088/1361-6528/28/6/065406 10.1021/acsnano.5b05041 10.1038/nmat2297 10.1039/C6TA08331E 10.1038/nchem.2515 10.1016/j.nanoen.2016.04.003 10.1002/chem.201604071 10.1149/2.074205jes 10.1039/C6TA05384J 10.1016/j.nanoen.2017.02.028 10.1016/j.electacta.2016.06.090 10.1016/j.electacta.2015.01.082 10.1039/C4TA04346D 10.1016/j.biortech.2012.02.010 10.1021/acsami.7b03786 10.1039/C3CC48112C 10.3390/ma9040246 10.1039/C6RA03992H |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2018.07.044 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 90 |
ExternalDocumentID | 30025331 10_1016_j_jcis_2018_07_044 S0021979718308002 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c492t-ccc7461438b6be442997ec6f4c7ebf6d8ac6fda5337e40b13fd7bb567874e3123 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 15:25:27 EDT 2025 Thu Jul 10 23:54:21 EDT 2025 Wed Feb 19 02:43:54 EST 2025 Tue Jul 01 01:18:34 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 Fri Feb 23 02:24:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitors Ni-MOF Ni/Co-MOF |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-ccc7461438b6be442997ec6f4c7ebf6d8ac6fda5337e40b13fd7bb567874e3123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30025331 |
PQID | 2073318416 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2116869586 proquest_miscellaneous_2073318416 pubmed_primary_30025331 crossref_primary_10_1016_j_jcis_2018_07_044 crossref_citationtrail_10_1016_j_jcis_2018_07_044 elsevier_sciencedirect_doi_10_1016_j_jcis_2018_07_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Motevalli, Zarghami, Panahi-Kalamuei (b0185) 2016; 27 Phuong, Buess-Herman, Thom, Nam, Lam, Thanh (b0190) 2016; 5 Gao, Sui, Wei, Qi, Meng, He (b0215) 2018; 29 Pachfule, Shinde, Majumder, Xu (b0075) 2016; 8 Kang, Sun, Kong, Lang, Luo (b0230) 2014; 25 Amali, Sun, Xu (b0100) 2014; 50 Pérez, Yeon, Ségalini, Presser, Taberna (b0025) 2013; 23 Jiao, Pei, Yan, Chen, Hu, Chen (b0130) 2016; 4 Xia, Mahmood, Zou, Xu (b0105) 2015; 8 Tsai, Yang, Lee, Huang (b0245) 2016; 9 Qu, Cheng, Li, Yuan, Chen, Chen, Wang, Peng (b0255) 2016; 28 Huang, Yan, Sui, Wei, Qi, Meng, He (b0020) 2017; 28 Du, Dong, Liu, Wei, Liu, Liu (b0145) 2018; 518 Simon, Gogotsi (b0005) 2008; 7 Campagnol, Romero-Vara, Deleu, Stappers, Binnemans, De Vos, Fransaer (b0110) 2014; 1 Zhang, Luo, Tang, Ye, Peng, Tang, Sun, Fransaer (b0050) 2017; 31 Wang, Wang, Zhang, Tong, Zhang (b0170) 2017; 184 Yang, Xiong, Zheng, Qiu, Wei (b0115) 2014; 2 Zou, Chen, Liu, Yu, Liang, Bhaway, Gao, Zhu (b0175) 2015; 10 Liu, Shi, Zhai, Cheng, Liu, Wang (b0120) 2016; 8 Chaikittisilp, Hu, Wang, Huang, Fujita, Wu, Chen, Yamauchi, Ariga (b0095) 2012; 48 Saheli, Rezvani (b0080) 2017; 1127 Sun, Huang, Sui, Wei, Qi, Meng, Hu, He (b0225) 2017; 28 Yang, Zheng, Xiong, Li, Wei (b0165) 2014; 2 Hong, Lee, Ahn, Pak, Lee, Jang, Lee, Hou, Cho, Morris, Shin, Cha, Sohn, Kim (b0210) 2017; 39 Xu, Yang, Xue, Wang, Cao (b0195) 2016; 211 Yan, Gu, Zheng, Zheng, Pang, Xue (b0135) 2016; 4 Dai, Zang, Yang, Sun, Si, Huang, Dong (b0220) 2015; 7 Bendi, Kumar, Bhavanasi, Parida, Lee (b0065) 2016; 6 Zhang, Yoshikawa, Awaga (b0070) 2016; 28 Jayakumar, Antony, Wang, Lee (b0015) 2017; 13 Chen, Wang, Cao, Liu, Zhou, Ouyang, Jiat (b0035) 2017; 9 Gao, Sui, Wei, Qi, Meng, He (b0085) 2018; 53 Jiao, Chen, Chen, Pei, Hu (b0160) 2017; 5 Jiao, Pei, Chen, Yan, Hu, Zhang, Chen (b0180) 2017; 5 Li, Yu, Gu, Tang, Wang, Lou (b0235) 2017; 28 Wu, Wang, Ren, Zhao, Zhou, Li, Cheng (b0045) 2010; 20 Tang, Tang, Gong (b0240) 2012; 159 Xia, Qu, Liang, Zhao, Dai, Qiu, Jiao, Zhang, Huang, Guo, Dang, Zou, Xia, Xu, Liu (b0090) 2017; 17 Elmouwahidi, Zapata-Benabithe, Carrasco-Marín, Moreno-Castilla (b0040) 2012; 111 González, Goikolea, Barrena, Mysyk (b0030) 2016; 58 Yaghi, Keeffe, Ockwig, Chae, Eddaoudi (b0060) 2003; 423 Srimuk, Luanwuthi, Krittayavathananon, Sawangphruk (b0150) 2015; 157 Shen, Wang, Xu, Li, Dou, Zhang (b0055) 2015; 5 Yang, Ma, Gao, Wei (b0140) 2017; 23 Chang, Sui, Qi, Jiang, He, Wei, Meng, Jin (b0010) 2017; 226 Wei, Zhang, Wu, Tang, Li, Shen, Wang, Zhou, Lan (b0155) 2017; 34 Qu, Jiao, Zhao, Chen, Zou, Walton, Liu (b0125) 2016; 26 He, Li, Wang, Wen, Gao, Ma, Yang, Yang (b0200) 2016; 6 Saravanakumar, Purushothaman, Muralidharan (b0250) 2016; 170 Zhu, Ji, Wu, Song, Hou, Wu, He, Chen, Banks (b0205) 2014; 267 Liu (10.1016/j.jcis.2018.07.044_b0120) 2016; 8 Yang (10.1016/j.jcis.2018.07.044_b0115) 2014; 2 Jiao (10.1016/j.jcis.2018.07.044_b0160) 2017; 5 Saravanakumar (10.1016/j.jcis.2018.07.044_b0250) 2016; 170 Pachfule (10.1016/j.jcis.2018.07.044_b0075) 2016; 8 Yang (10.1016/j.jcis.2018.07.044_b0140) 2017; 23 Phuong (10.1016/j.jcis.2018.07.044_b0190) 2016; 5 Chang (10.1016/j.jcis.2018.07.044_b0010) 2017; 226 Xia (10.1016/j.jcis.2018.07.044_b0105) 2015; 8 Huang (10.1016/j.jcis.2018.07.044_b0020) 2017; 28 Srimuk (10.1016/j.jcis.2018.07.044_b0150) 2015; 157 Wu (10.1016/j.jcis.2018.07.044_b0045) 2010; 20 Tang (10.1016/j.jcis.2018.07.044_b0240) 2012; 159 Simon (10.1016/j.jcis.2018.07.044_b0005) 2008; 7 Hong (10.1016/j.jcis.2018.07.044_b0210) 2017; 39 Jiao (10.1016/j.jcis.2018.07.044_b0130) 2016; 4 Amali (10.1016/j.jcis.2018.07.044_b0100) 2014; 50 Qu (10.1016/j.jcis.2018.07.044_b0255) 2016; 28 Yan (10.1016/j.jcis.2018.07.044_b0135) 2016; 4 He (10.1016/j.jcis.2018.07.044_b0200) 2016; 6 Kang (10.1016/j.jcis.2018.07.044_b0230) 2014; 25 Zou (10.1016/j.jcis.2018.07.044_b0175) 2015; 10 Tsai (10.1016/j.jcis.2018.07.044_b0245) 2016; 9 Li (10.1016/j.jcis.2018.07.044_b0235) 2017; 28 Shen (10.1016/j.jcis.2018.07.044_b0055) 2015; 5 Gao (10.1016/j.jcis.2018.07.044_b0215) 2018; 29 Wei (10.1016/j.jcis.2018.07.044_b0155) 2017; 34 Yaghi (10.1016/j.jcis.2018.07.044_b0060) 2003; 423 Wang (10.1016/j.jcis.2018.07.044_b0170) 2017; 184 Zhang (10.1016/j.jcis.2018.07.044_b0070) 2016; 28 Jiao (10.1016/j.jcis.2018.07.044_b0180) 2017; 5 Chaikittisilp (10.1016/j.jcis.2018.07.044_b0095) 2012; 48 Du (10.1016/j.jcis.2018.07.044_b0145) 2018; 518 Zhu (10.1016/j.jcis.2018.07.044_b0205) 2014; 267 Sun (10.1016/j.jcis.2018.07.044_b0225) 2017; 28 Campagnol (10.1016/j.jcis.2018.07.044_b0110) 2014; 1 Motevalli (10.1016/j.jcis.2018.07.044_b0185) 2016; 27 Qu (10.1016/j.jcis.2018.07.044_b0125) 2016; 26 Jayakumar (10.1016/j.jcis.2018.07.044_b0015) 2017; 13 Pérez (10.1016/j.jcis.2018.07.044_b0025) 2013; 23 Xia (10.1016/j.jcis.2018.07.044_b0090) 2017; 17 Elmouwahidi (10.1016/j.jcis.2018.07.044_b0040) 2012; 111 Bendi (10.1016/j.jcis.2018.07.044_b0065) 2016; 6 Xu (10.1016/j.jcis.2018.07.044_b0195) 2016; 211 González (10.1016/j.jcis.2018.07.044_b0030) 2016; 58 Yang (10.1016/j.jcis.2018.07.044_b0165) 2014; 2 Dai (10.1016/j.jcis.2018.07.044_b0220) 2015; 7 Saheli (10.1016/j.jcis.2018.07.044_b0080) 2017; 1127 Chen (10.1016/j.jcis.2018.07.044_b0035) 2017; 9 Gao (10.1016/j.jcis.2018.07.044_b0085) 2018; 53 Zhang (10.1016/j.jcis.2018.07.044_b0050) 2017; 31 |
References_xml | – volume: 267 start-page: 888 year: 2014 end-page: 900 ident: b0205 article-title: Spinel NiCo publication-title: J. Power Sources – volume: 8 start-page: 718 year: 2016 end-page: 724 ident: b0075 article-title: Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework publication-title: Nat. Chem. – volume: 2 start-page: 19005 year: 2014 end-page: 19010 ident: b0165 article-title: Zn-doped Ni-MOF material with a high supercapacitive performance publication-title: J. Mater. Chem. A – volume: 6 year: 2016 ident: b0065 article-title: Metal organic framework-derived metal phosphates as electrode materials for supercapacitors publication-title: Adv. Energy Mater. – volume: 7 start-page: 25396 year: 2015 ident: b0220 article-title: Template synthesis of shape-tailorable NiS publication-title: ACS Appl. Mater. Interface – volume: 157 start-page: 69 year: 2015 end-page: 77 ident: b0150 article-title: Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper publication-title: Electrochim. Acta – volume: 423 start-page: 705 year: 2003 end-page: 714 ident: b0060 article-title: Reticular synthesis and the design of new materials publication-title: Nature – volume: 34 start-page: 205 year: 2017 end-page: 214 ident: b0155 article-title: POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage publication-title: Nano Energy – volume: 25 start-page: 957 year: 2014 end-page: 961 ident: b0230 article-title: Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors publication-title: Chin. Chem. Lett. – volume: 28 start-page: 3646 year: 2016 end-page: 3652 ident: b0255 article-title: A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode publication-title: Adv. Mater. – volume: 48 start-page: 7259 year: 2012 ident: b0095 article-title: Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes publication-title: Chem. Commun. – volume: 6 start-page: 49478 year: 2016 end-page: 49486 ident: b0200 article-title: MOF-derived Ni publication-title: RSC Adv. – volume: 8 start-page: 1837 year: 2015 end-page: 1866 ident: b0105 article-title: Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion publication-title: Energy Environ. Sci. – volume: 518 start-page: 57 year: 2018 end-page: 68 ident: b0145 article-title: Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor publication-title: J. Colloid Interface Sci. – volume: 211 start-page: 595 year: 2016 end-page: 602 ident: b0195 article-title: Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor publication-title: Electrochim. Acta – volume: 58 start-page: 1189 year: 2016 end-page: 1206 ident: b0030 article-title: Review on supercapacitors: technologies and materials publication-title: Renew. Sustain. Energy Rev. – volume: 28 start-page: 12747 year: 2017 end-page: 12754 ident: b0020 article-title: One-step hydrothermal synthesis of Ni publication-title: J. Mater. Sci.: Mater. Electron. – volume: 10 start-page: 377 year: 2015 end-page: 386 ident: b0175 article-title: Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage publication-title: ACS Nano – volume: 226 start-page: 69 year: 2017 end-page: 78 ident: b0010 article-title: Facile synthesis of Ni publication-title: Electrochim. Acta – volume: 9 start-page: 246 year: 2016 ident: b0245 article-title: An effective electrodeposition mode for porous MnO publication-title: Materials – volume: 23 start-page: 631 year: 2017 end-page: 636 ident: b0140 article-title: Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode publication-title: Chem.-Eur. J. – volume: 31 start-page: 311 year: 2017 end-page: 321 ident: b0050 article-title: A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading publication-title: Nano Energy – volume: 53 start-page: 6807 year: 2018 end-page: 6818 ident: b0085 article-title: Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors publication-title: J. Mater. Sci. – volume: 27 start-page: 4794 year: 2016 end-page: 4799 ident: b0185 article-title: Simple, novel and low-temperature synthesis of rod-like NiO nanostructure via thermal decomposition route using a new starting reagent and its photocatalytic activity assessment publication-title: J. Mater. Sci.: Mater. Electron. – volume: 1 start-page: 1182 year: 2014 end-page: 1188 ident: b0110 article-title: A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe) publication-title: ChemCatChem – volume: 29 start-page: 2477 year: 2018 end-page: 2483 ident: b0215 article-title: Facile synthesis of nickel metal-organic framework derived hexagonal flaky NiO for supercapacitors publication-title: J. Mater. Sci.: Mater. Electron. – volume: 4 start-page: 13344 year: 2016 end-page: 13351 ident: b0130 article-title: Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid deceives publication-title: J. Mater. Chem. A – volume: 17 start-page: 2788 year: 2017 end-page: 2795 ident: b0090 article-title: High-performance energy storage and conversion materials derived from a single metal organic framework/graphene aerogel composite publication-title: Nano Lett. – volume: 111 start-page: 185 year: 2012 end-page: 190 ident: b0040 article-title: Activated carbons from KOH-activation of argan ( publication-title: Bioresour. Technol. – volume: 8 start-page: 4585 year: 2016 end-page: 4591 ident: b0120 article-title: Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material publication-title: ACS Appl. Mater. Interface – volume: 13 start-page: 1603102 year: 2017 ident: b0015 article-title: MOF-derived hollow cage Ni publication-title: Small – volume: 28 start-page: 1298 year: 2016 end-page: 1303 ident: b0070 article-title: Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal-organic framework publication-title: Chem. Mater. – volume: 5 start-page: 23744 year: 2017 end-page: 23752 ident: b0160 article-title: Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage publication-title: J. Mater. Chem. A – volume: 28 start-page: 14019 year: 2017 end-page: 14025 ident: b0225 article-title: Cobalt oxide composites derived from zeolitic imidazolate on carbon fiber paper as a binder-free anode for supercapacitor publication-title: J. Mater. Sci.: Mater. Electron. – volume: 4 start-page: 19078 year: 2016 end-page: 19085 ident: b0135 article-title: Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors publication-title: J. Mater. Chem. A – volume: 5 start-page: 537 year: 2016 end-page: 547 ident: b0190 article-title: Synthesis of Cu-BTC, from Cu and benzene-1,3,5-tricarboxylic acid (H publication-title: Green Process. Synth. – volume: 184 start-page: 4107 year: 2017 end-page: 4115 ident: b0170 article-title: Waxberry-like magnetic porous carbon composites prepared from a nickel-organic framework for solid-phase extraction of fluoroquinolones publication-title: Microchimica Acta – volume: 9 start-page: 19831 year: 2017 end-page: 19842 ident: b0035 article-title: Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film publication-title: ACS Appl. Mater. Interface – volume: 2 start-page: 16640 year: 2014 end-page: 16644 ident: b0115 article-title: Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode publication-title: J. Mater. Chem. A – volume: 28 start-page: 65406 year: 2017 ident: b0235 article-title: Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors publication-title: Nanotechnology – volume: 26 start-page: 66 year: 2016 end-page: 73 ident: b0125 article-title: Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study publication-title: Nano Energy – volume: 39 start-page: 337 year: 2017 end-page: 345 ident: b0210 article-title: Highly stable 3D porous heterostructures with hierarchically-coordinated octahedral transition metals for enhanced performance supercapacitors publication-title: Nano Energy – volume: 170 start-page: 266 year: 2016 end-page: 275 ident: b0250 article-title: Fabrication of two-dimensional reduced graphene oxide supported V publication-title: Mater. Chem. Phys. – volume: 5 start-page: 1094 year: 2017 end-page: 1102 ident: b0180 article-title: Mixed-metallic MOFs based electrode materials for high performance hybrid supercapacitors publication-title: J. Mater. Chem. A – volume: 23 start-page: 1081 year: 2013 end-page: 1089 ident: b0025 article-title: Structure and electrochemical performance of carbide-derived carbon nanopowders publication-title: Adv. Funct. Mater. – volume: 20 start-page: 3595 year: 2010 end-page: 3602 ident: b0045 article-title: Anchoring hydrous RuO publication-title: Adv. Funct. Mater. – volume: 1127 start-page: 583 year: 2017 end-page: 589 ident: b0080 article-title: A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties publication-title: J. Mol. Struct. – volume: 50 start-page: 1519 year: 2014 ident: b0100 article-title: From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage publication-title: Chem. Commun. – volume: 159 start-page: A651 year: 2012 end-page: A656 ident: b0240 article-title: Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors publication-title: J. Electrochem. Soc. – volume: 5 year: 2015 ident: b0055 article-title: NiCo publication-title: Adv. Energy Mater. – volume: 7 start-page: 845 year: 2008 end-page: 854 ident: b0005 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. – volume: 8 start-page: 4585 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0120 article-title: Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.5b10781 – volume: 17 start-page: 2788 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0090 article-title: High-performance energy storage and conversion materials derived from a single metal organic framework/graphene aerogel composite publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05004 – volume: 53 start-page: 6807 year: 2018 ident: 10.1016/j.jcis.2018.07.044_b0085 article-title: Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2005-1 – volume: 25 start-page: 957 year: 2014 ident: 10.1016/j.jcis.2018.07.044_b0230 article-title: Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2014.05.032 – volume: 518 start-page: 57 year: 2018 ident: 10.1016/j.jcis.2018.07.044_b0145 article-title: Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.02.010 – volume: 28 start-page: 3646 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0255 article-title: A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode publication-title: Adv. Mater. doi: 10.1002/adma.201600689 – volume: 20 start-page: 3595 year: 2010 ident: 10.1016/j.jcis.2018.07.044_b0045 article-title: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201001054 – volume: 267 start-page: 888 year: 2014 ident: 10.1016/j.jcis.2018.07.044_b0205 article-title: Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.134 – volume: 1127 start-page: 583 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0080 article-title: A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2016.08.013 – volume: 28 start-page: 12747 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0020 article-title: One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor publication-title: J. Mater. Sci.: Mater. Electron. – volume: 31 start-page: 311 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0050 article-title: A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.024 – volume: 170 start-page: 266 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0250 article-title: Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.12.051 – volume: 48 start-page: 7259 year: 2012 ident: 10.1016/j.jcis.2018.07.044_b0095 article-title: Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes publication-title: Chem. Commun. doi: 10.1039/c2cc33433j – volume: 5 year: 2015 ident: 10.1016/j.jcis.2018.07.044_b0055 article-title: NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400977 – volume: 1 start-page: 1182 year: 2014 ident: 10.1016/j.jcis.2018.07.044_b0110 article-title: A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe) publication-title: ChemCatChem – volume: 28 start-page: 1298 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0070 article-title: Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal-organic framework publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04075 – volume: 8 start-page: 1837 year: 2015 ident: 10.1016/j.jcis.2018.07.044_b0105 article-title: Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00762C – volume: 6 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0065 article-title: Metal organic framework-derived metal phosphates as electrode materials for supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501833 – volume: 5 start-page: 1094 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0180 article-title: Mixed-metallic MOFs based electrode materials for high performance hybrid supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09805C – volume: 27 start-page: 4794 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0185 article-title: Simple, novel and low-temperature synthesis of rod-like NiO nanostructure via thermal decomposition route using a new starting reagent and its photocatalytic activity assessment publication-title: J. Mater. Sci.: Mater. Electron. – volume: 58 start-page: 1189 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0030 article-title: Review on supercapacitors: technologies and materials publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.249 – volume: 7 start-page: 25396 year: 2015 ident: 10.1016/j.jcis.2018.07.044_b0220 article-title: Template synthesis of shape-tailorable NiS2 hollow prisms as high-performance supercapacitor materials publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.5b07941 – volume: 423 start-page: 705 year: 2003 ident: 10.1016/j.jcis.2018.07.044_b0060 article-title: Reticular synthesis and the design of new materials publication-title: Nature doi: 10.1038/nature01650 – volume: 5 start-page: 23744 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0160 article-title: Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07464F – volume: 39 start-page: 337 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0210 article-title: Highly stable 3D porous heterostructures with hierarchically-coordinated octahedral transition metals for enhanced performance supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.010 – volume: 226 start-page: 69 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0010 article-title: Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.184 – volume: 2 start-page: 16640 year: 2014 ident: 10.1016/j.jcis.2018.07.044_b0115 article-title: Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04140B – volume: 13 start-page: 1603102 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0015 article-title: MOF-derived hollow cage NixCo3−xO4 and their synergy with graphene for outstanding supercapacitors publication-title: Small doi: 10.1002/smll.201603102 – volume: 184 start-page: 4107 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0170 article-title: Waxberry-like magnetic porous carbon composites prepared from a nickel-organic framework for solid-phase extraction of fluoroquinolones publication-title: Microchimica Acta doi: 10.1007/s00604-017-2438-2 – volume: 23 start-page: 1081 year: 2013 ident: 10.1016/j.jcis.2018.07.044_b0025 article-title: Structure and electrochemical performance of carbide-derived carbon nanopowders publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200695 – volume: 28 start-page: 65406 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0235 article-title: Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors publication-title: Nanotechnology doi: 10.1088/1361-6528/28/6/065406 – volume: 10 start-page: 377 year: 2015 ident: 10.1016/j.jcis.2018.07.044_b0175 article-title: Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage publication-title: ACS Nano doi: 10.1021/acsnano.5b05041 – volume: 7 start-page: 845 year: 2008 ident: 10.1016/j.jcis.2018.07.044_b0005 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 4 start-page: 19078 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0135 article-title: Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08331E – volume: 8 start-page: 718 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0075 article-title: Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework publication-title: Nat. Chem. doi: 10.1038/nchem.2515 – volume: 26 start-page: 66 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0125 article-title: Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.003 – volume: 23 start-page: 631 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0140 article-title: Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode publication-title: Chem.-Eur. J. doi: 10.1002/chem.201604071 – volume: 159 start-page: A651 year: 2012 ident: 10.1016/j.jcis.2018.07.044_b0240 article-title: Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors publication-title: J. Electrochem. Soc. doi: 10.1149/2.074205jes – volume: 4 start-page: 13344 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0130 article-title: Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid deceives publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05384J – volume: 5 start-page: 537 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0190 article-title: Synthesis of Cu-BTC, from Cu and benzene-1,3,5-tricarboxylic acid (H3BTC), by a green electrochemical method publication-title: Green Process. Synth. – volume: 34 start-page: 205 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0155 article-title: POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.028 – volume: 211 start-page: 595 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0195 article-title: Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.090 – volume: 157 start-page: 69 year: 2015 ident: 10.1016/j.jcis.2018.07.044_b0150 article-title: Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.082 – volume: 2 start-page: 19005 year: 2014 ident: 10.1016/j.jcis.2018.07.044_b0165 article-title: Zn-doped Ni-MOF material with a high supercapacitive performance publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04346D – volume: 29 start-page: 2477 year: 2018 ident: 10.1016/j.jcis.2018.07.044_b0215 article-title: Facile synthesis of nickel metal-organic framework derived hexagonal flaky NiO for supercapacitors publication-title: J. Mater. Sci.: Mater. Electron. – volume: 28 start-page: 14019 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0225 article-title: Cobalt oxide composites derived from zeolitic imidazolate on carbon fiber paper as a binder-free anode for supercapacitor publication-title: J. Mater. Sci.: Mater. Electron. – volume: 111 start-page: 185 year: 2012 ident: 10.1016/j.jcis.2018.07.044_b0040 article-title: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.02.010 – volume: 9 start-page: 19831 year: 2017 ident: 10.1016/j.jcis.2018.07.044_b0035 article-title: Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.7b03786 – volume: 50 start-page: 1519 year: 2014 ident: 10.1016/j.jcis.2018.07.044_b0100 article-title: From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage publication-title: Chem. Commun. doi: 10.1039/C3CC48112C – volume: 9 start-page: 246 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0245 article-title: An effective electrodeposition mode for porous MnO2/Ni foam composite for asymmetric supercapacitors publication-title: Materials doi: 10.3390/ma9040246 – volume: 6 start-page: 49478 year: 2016 ident: 10.1016/j.jcis.2018.07.044_b0200 article-title: MOF-derived NixCo1−x(OH)2 composite microspheres for high-performance supercapacitors publication-title: RSC Adv. doi: 10.1039/C6RA03992H |
SSID | ssj0011559 |
Score | 2.6665301 |
Snippet | [Display omitted]
Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in... Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | capacitance carbon cobalt coordination polymers electrochemistry electrodes hot water treatment Ni-MOF Ni/Co-MOF nickel specific energy Supercapacitors |
Title | Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors |
URI | https://dx.doi.org/10.1016/j.jcis.2018.07.044 https://www.ncbi.nlm.nih.gov/pubmed/30025331 https://www.proquest.com/docview/2073318416 https://www.proquest.com/docview/2116869586 |
Volume | 531 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9gAcUFu-CrQyEjdkdp117ORYLVQLiJ6o1JsVj8dSypKu6O6V385MnCxw6B44OhpHlmc88xLPvBHibRGiLYIB1YQpKOMSqBCrpOhDDKdlk1Lo6Yu_XtrFlfl8XV7viflYC8NplYPvzz6999bDk8mwm5NV23KNL502V5NznfWwhyvYjWMrf_9rm-ah-dotp3loxdJD4UzO8bqBlim7ddUTeBpzX3C6D3z2QejiUDwe0KM8zws8EnvYHYsH87Fp27F49Be_4BNx94F_ES9p69Wy_Y6ya-nMLifAHCBr-QMJeKvc1glkGrO0JAe2KIf-OBElYdpsppIArmR-Y7n6U24g7zY0Aoq50HLnnqfi6uLjt_lCDV0WFJi6WCsAcMZyF_RgAxqOTw7BJgMOQ7KxamgQG4KFDs006FmKLoSSgpwzOKPA90zsd7cdvhAyldFqiyaUoTYFpFBgAI11ciW6iOZE6HF7PQwU5NwJY-nHXLMbzyrxrBI_dZ5UciLebeesMgHHTuly1Jr_x4w8RYid896MKvakMb40aTq83bAQd7Xky9kdMlrbytZlRTLPs31s1zpjVElvePmfK3slHvIoZ9C8Fvvrnxs8JRy0Dme9oZ-Jg_NPXxaXvwGhPAqf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69NDtMGzdq3tqwG6DkNjRwz4W2Yp0bXNqgd4E6wW4zdxgTf7_SEvOtkNz2NE2ZQgiJX42yY8AX0rrVWmF442dOC50dNz6KnL8EAsT2cRoe_rii4WaX4kf1_J6D2ZDLQylVeazP53p_Wmd74zzao5XbUs1vrjbdI2H67SHPY9gn9ip5Aj2j0_P5ottMIEibynTo-A0INfOpDSvG9cSa3dR9RyeQjzknx7Cn70fOnkGTzOAZMdpjs9hL3SHcDAb-rYdwpO_KAZfwP03-ku8xNXny_Y2sK7FbbscO6IBWbOfAbE3T52dHItDohYj3-ZZbpHjA0NYmyyVIcZlRHHMVn8qDtj9Bq8cul3XUvOel3B18v1yNue50QJ3oi7X3DmnhaJG6FbZIMhF6eBUFE4HG5WvGrzwDSJDHcTEFtPotbUS_ZwWYYq-7xWMursuvAEWpVeFCsJKW4vSRVsG64pQRy2D9kEcQTEsr3GZhZyaYSzNkG52Y0glhlRiJtqgSo7g63bMKnFw7JSWg9bMP5Zk0EnsHPd5ULFBjVHcpOnC3YaEqLElxWd3yBSFqlQtK5R5nexjO9cpAUt8w9v_nNknOJhfXpyb89PF2Tt4TE9SQs17GK1_bcIHhEVr-zGb_W-1IA1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dandelion-like+nickel%2Fcobalt+metal-organic+framework+based+electrode+materials+for+high+performance+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Gao%2C+Shuwen&rft.au=Sui%2C+Yanwei&rft.au=Wei%2C+Fuxiang&rft.au=Qi%2C+Jiqiu&rft.date=2018-12-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=531&rft.spage=83&rft_id=info:doi/10.1016%2Fj.jcis.2018.07.044&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |