Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors

[Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hyd...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 531; pp. 83 - 90
Main Authors Gao, Shuwen, Sui, Yanwei, Wei, Fuxiang, Qi, Jiqiu, Meng, Qingkun, Ren, Yaojian, He, Yezeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g−1 at 1 A g−1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g−1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg−1 at the power density of 800 W kg−1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2018.07.044